
ptsecurity.com

Vulnerabilities
and threats
in mobile
applications
2019

http://ptsecurity.com

Contents

Introduction 2

Executive summary 3

How mobile applications work 3

Client-side vulnerabilities 4

Server-side vulnerabilities 12

Mobile application threats 15

Recommendations for users 16

Risks for users 20

Conclusions 24

About the research 25

Introduction
In 2018, mobile apps were downloaded onto user

devices over 205 billion times. Data by Marketing

Land indicates that 57 percent of total digital media

time is spent on smartphones and tablets. More often

than not, our daily lives depend on apps for instant

messaging, online banking, business functions, and

mobile account management. According to Juniper

Research, the number of people using mobile banking

apps is approaching two billion—around 40 percent of

the world's adult population.

Developers pay painstaking attention to software

design in order to give us a smooth and convenient

experience. People gladly install mobile apps and

provide personal information, but rarely stop to think

about the security implications.

Positive Technologies experts regularly perform secu-

rity analysis of mobile applications. This report sum-

marizes the findings of their work performing security

assessment of mobile apps for iOS and Android in 2018.

2

https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://marketingland.com/report-50-digital-media-time-now-spent-within-five-mobile-apps-222543
https://www.juniperresearch.com/press/press-releases/digital-banking-users-to-reach-2-billion

Executive summary

 � High-risk vulnerabilities were found in 38 percent of mobile applications

for iOS and in 43 percent of Android applications.

 � Most security issues are found on both platforms. Insecure data storage

is the most common issue, found in 76 percent of mobile applications.

Passwords, financial information, personal data, and correspondence

are at risk.

 � Hackers seldom need physical access to a smartphone to steal data: 89

percent of vulnerabilities can be exploited using malware.

 � Most cases are caused by weaknesses in security mechanisms (74% and

57% for iOS and Android apps, respectively, and 42% for server-side

components). Because such vulnerabilities creep in during the design

stage, fixing them requires significant changes to code.

 � Risks do not necessarily result from any one particular vulnerability on

the client or server side. In many cases, they are the product of several

seemingly small deficiencies in various parts of the mobile application.

Taken together, these oversights can add up to serious consequenc-

es, including financial losses for users and reputational damage to the

developer.

 � Many cyberattacks rely on user inattention. Escalated privileges or side-

loaded software can pave the way for a damaging attack.

How mobile applications work

Mobile applications are at the epicenter of current development trends.

Most of these applications have a client–server architecture. The client runs

on the operating system, which is most frequently Android or iOS. This cli-

ent is downloaded to the device from the app distribution platforms, where

developers publish their wares. As perceived from the user's point of view,

the client installed on the smartphone is the mobile application. This is what

the user interacts with to make purchases, pay bills, or read emails. But in

fact, there is also another component: the server, which is hosted by the

developer. Often this role is performed by the same software that is respon-

sible for generating and processing content on the site. In other words, most

often the server-side component is a web application that interacts with the

mobile client over the Internet by means of a special application program-

ming interface (API). So in reality we can regard the server as the more

important component. It is where information is stored and processed. The

server is also responsible for synchronizing user data between devices.

Modern mobile OSs come with various security mechanisms. By default, an

installed app can access only files in its own sandbox directories, and user

rights do not allow editing system files. Nevertheless, errors made by devel-

opers in designing and writing code for mobile applications cause gaps in

protection and can be abused by attackers.

3

Figure 1. Client–server interaction in a mobile application

of vulnerabilities

are on the client side

of vulnerabilities

can be exploited

without physical

access

of vulnerabilities can

be exploited without

administrator rights

(jailbreak or root)

Comprehensive security checks of a mobile application include a search for

vulnerabilities in the client and server, as well as data transmission between

them. In this report, we will cover all three aspects. We will also talk about

threats to users, including threats arising from interaction between the cli-

ent and server sides of mobile applications. Methodology and the source

dataset are described at the end of the report.

Client-side vulnerabilities

60% 89% 56%

Android applications tend to contain critical vulnerabilities slightly more often

than those written for iOS (43% vs. 38%). But this difference is not significant,

and the overall security level of mobile application clients for Android and iOS

is roughly the same. About a third of all vulnerabilities on the client side for

both platforms are high-risk ones.

4

Android

iOS

43%

38%

57%

62%

High risk Medium risk

Figure 2. Maximum risk level of vulnerabilities (percentage of client-side components)

Figure 3. Vulnerabilities by severity

Figure 4. Security of client-side components (percentage of mobile applications)

30%30%

Высокий риск

Низкий

Средний

40%

32%16%

Высокий риск

Низкий

Средний

52%

High risk Low riskMedium risk

Android

 38% Android
 22% iOS

Percentage of applications with insecure

interprocess communication

iOS

11%11% 11%

Low

Below average

Above average

Medium

Acceptable

45%22%

Insecure interprocess communication (IPC) is a common critical vulnerability

allowing an attacker to remotely access data processed in a vulnerable mobile

application. Let us review the workings of IPC in greater detail.

5

Android provides Intent message objects as a way for application components

to communicate with each other. If these messages are broadcasted, any

sensitive data in them can be compromised by malware that has registered a

BroadcastReceiver instance.

Figure 5. Insecure interprocess communication on Android

Recommendations for developers

Use LocalBroadcastManager to send and receive broadcast messages

not intended for third-party applications

Interprocess communication is generally forbidden for iOS applications.

However, there are times when it is necessary. In iOS 8, Apple introduced

App Extensions. With them, apps can share their functionality with other

apps on the same device. For instance, social networking apps can provide

quick in-browser sharing of content.

6

Figure 6. Example of an app extension for Twitter

Deep linking is a common way for developers to implement communication

between an app extension and its containing app. In this case, the app is

called by a specific URL scheme registered in the system. During installa-

tion, the containing app registers itself as the handler for schemes listed

in Info.plist. Such schemes are not tied to an application. So if the device

contains a malicious app that also handles the same URL scheme, there is

no telling which application will win out. This opens up opportunities for

attackers to stage phishing attacks and steal user credentials.

Recommendations for developers

If you need to use links for interaction between components, use universal links

Insecure interprocess communication arises during design of communi-

cation interfaces between app components, and is classified as an error

in implementation of security mechanisms. Errors in security mechanisms

were the cause of 74 percent of vulnerabilities in iOS applications and 57

percent of vulnerabilities in Android applications.

Host App

(in this example, Safari

browser)

Containing App

(in this example, Twitter)

App Extension

(in this example, extension

for Twitter)

7

Figure 7. Vulnerabilities by type

57%33%

Ошибки реализации
механизмов защиты

Недостатки конфигурации

Уязвимости в коде приложения

10%

74%16%10%

Ошибки реализации
механизмов защиты

Недостатки конфигурации

Уязвимости в коде приложения

Flaws in security
mechanism
implementation

MisconfigurationApplication
source code
vulnerabilities

Android iOS

In 2018, when analyzing mobile applications for iOS, we encountered the fail-

ure by developers to restrict use of custom keyboard extensions. Since iOS 8,

Apple has allowed the use of third-party keyboards (Android already had and

continues to support them). It should be noted that iOS places more strin-

gent restrictions on keyboard use than does Android. But if the user allows

network interaction, Apple cannot control what the keyboard developers do

with keystroke data.

Recommendations for developers

To disable use of third-party keyboards within an application, implement the

shouldAllowExtensionPointIdentifier method within the application's UIApplicationDelegate

If the application accepts input of sensitive data such as financial information, implement a

custom keyboard. This will secure the app from attacks that manipulate the system keyboard

One third of vulnerabilities in Android mobile applications stem from configu-

ration flaws. For example, our experts when analyzing AndroidManifest.xml

often discover the android:allowBackup attribute set to "true". This allows

creating a backup copy of application data when the device is connected to

a computer. This flaw can be used by an attacker to obtain application data

even on a non-rooted device.

The developer of the AI.type

virtual keyboard, for example,

has been collecting sensitive

data from mobile devices.

This fact was discovered

after the leak of a database

containing information

on 31 million users

25%
of Android applications
enable backups by setting

android:allowBackup to "true"

Code vulnerabilities Code vulnerabilities

8

https://kromtech.com/blog/security-center/virtual-keyboard-developer-leaked-31-million-of-client-records

Recommendations for developers

Disable app from being backed up by setting the android:allowBackup directive to "false"

Figure 8. Disabling backups in AndroidManifest.xml

Figure 9. Average number of vulnerabilities per client application

Figure 10. Average number of vulnerabilities per client application

Misconfiguration

Application source code vulnerabilities

Flaws in security mechanism implementation

2.5
2.1

0.3
0.4

0.6
1.2

Code
vulnerabilities

Android iOS

High risk Medium risk Low risk

iOS

Android

1.1

1.8

0.5

1.1

1.5

1.1

In security assessment, our experts scour applications for the vulnerabili-

ties that are most typical for each platform. At the same time, in most cases

developers make similar errors in both Android and iOS apps. That is why in

this document, we have provided combined vulnerability statistics without

per-platform breakdowns.

Mobile devices store data such as geolocation, personal data, correspond-

ence, credentials, and financial data, but secure storage of that data by

mobile applications is often overlooked. Insecure Data Storage is second in

the OWASP Mobile Top 10−2016 rating. This vulnerability was found in 76

percent of mobile applications.

9

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

Mobile devices allow viewing recently used applications and quickly switch-

ing between them. After the app moves to the background, the OS cap-

tures a snapshot of the app's current state for this purpose. Direct access

to these snapshots is available only on rooted devices. It is important to

make sure that snapshots do not contain sensitive data. For instance, if the

owner was just using a mobile bank app, the snapshot could contain a card

number. These snapshots could be stolen if the device is infected.

Figure 11. Mobile application vulnerabilities (percentage of client-side components)

Figure 12. Example of hiding application's contents

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Insecure data storage

Insecure transmission of sensitive data

Incorrect implementation of session expiration

Insecure interprocess communication

Sensitive data stored in application source code

Insufficient brute-force protection

Insecure configuration of the application

12%

18%

18%

29%

29%

35%

35%

76%

Third-party keyboards allowed

6%

No certificate pinning

High risk Medium risk Low risk

Recommendations for developers

Use a special background image to mask sensitive data on the application screen

10

Many mobile applications use a four- or six-digit PIN code for authentica-

tion. There are several ways of implementing PIN code verification when

the user logs in. Performing this check on the client side is not secure: this

would require that the PIN code be stored on the mobile device, which

increases the risk of a leak. Authentication data is stored insecurely in 53

percent of mobile applications.

Figure 13. Top five leaks in client-side components (percentage of vulnerable applications)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Authentication data

User session

Personal data

12%

12%

24%

53%

65%

Private encryption keys

Snapshots

PIN codes and passwords should be verified on the server, by passing cre-

dentials as hashes. Hash functions require a salt (set of random characters)

to increase security. Often our experts find the salt and other sensitive data

in the source code, which reduces application security. A good alternative

to storing the salt in the source code is generating it dynamically when the

user logs on, based on the data the user enters. However, this method is

secure only if the data has high entropy.

Recommendations for developers

Modern devices tend to use biometrics (Touch ID or Face ID) for authentication in applications.

In this case, the PIN code is stored on the device. Local storage of sensitive data is acceptable

only in special directories with encryption. Android has a key vault called Keystore;

iOS has Keychain

41%
of mobile applications
check authentication data
on the client side

11

Server-side vulnerabilities

As noted already, the server component of a mobile application is, in essence,

a web application. Web application vulnerabilities have been analyzed in our

previous report. However, here we will take a closer look at vulnerabilities in

the server components of mobile applications.

22%27%

High risk

Low risk

Medium risk

51%

Figure 14. Vulnerabilities by severity

Figure 15. Security of server-side components (percentage of systems)

According to McAfee, the amount of malware for mobile devices keeps

growing. Every quarter 1.5 to 2 million new malware variants are discovered.

As of the end of 2018, there were over 30 million malware variants in total.

Constant growth in the amount and variety of malware for mobile devices

has fueled the popularity of attacks on client-side components. Server vul-

nerabilities are no longer the main threat to mobile applications. Back in

2012, Weak Server Side Controls ranked second in the OWASP Mobile Top 10

rating. In 2016, server-side vulnerabilities did not even make the list of the

top 10 most common threats. However, risks related to server flaws still

remain, and major data leaks due to server vulnerabilities continue to occur.

Our study shows that the server side is just as vulnerable as the client side:

43 percent of server-side components have a security level that is "low" or

"extremely poor," and 33 percent contain critical vulnerabilities.

In August 2018 hackers stole

personal data for 20,000

users of the Air Canada

mobile app

14%43%

Extremely poor

Low

Medium

Below average

29%14%

12

https://www.ptsecurity.com/ww-en/analytics/web-application-vulnerabilities-statistics-2019/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://www.owasp.org/index.php/Mobile_Top_10_2012
https://www.cbc.ca/news/business/air-canada-mobile-app-1.4802879

33%67%

High risk

Medium risk

Figure 16. Maximum risk of vulnerabilities found (percentage of server-side components)

Figure 17. Vulnerabilities by type

Server-side components contain vulnerabilities both in application code

and in the app protection mechanisms. The latter include flaws in the imple-

mentation of two-factor authentication. Let us consider one vulnerability

our experts encountered in an application. If two identical requests are sent

to the server one right after the other, with a minimal interval between them,

one-time passwords are sent to the user's device both as push notifications

and via SMS to the linked phone number. The attacker can intercept SMS

messages and impersonate the legitimate user, for instance, by cleaning out

the user's bank account.

Recommendations for developers

It is not necessary to send one-time passwords twice in both SMS messages and push

notifications. Instead, use the password delivery method selected by the user

42%17%41%

Flaws in security
mechanism implementation

Misconfiguration

Application source code vulnerabilities

Code vulnerabilities

13

The average server-side component contains five code vulnerabilities and

one configuration vulnerability. Configuration flaws include disclosure of

sensitive information in error messages, fingerprinting in HTTP headers,

and TRACE availability.

Figure 18. Average number of vulnerabilities per server-side component

Figure 19. Average number of vulnerabilities per server-side component

Misconfiguration

Application source code vulnerabilities

Flaws in security mechanism implementation

1

2.4

2.4
Code

vulnerabilities

0 1 2 3

Low risk

Medium risk

High risk

1.2

3

1.6

0 10.5 1.5 2.5 3.52 3

When support for TRACE requests is combined with a Cross-Site Scripting

(XSS) vulnerability, an attacker can steal cookies and gain access to the

application. Because the server-side component of the mobile application

tends to share the same code as the website, Cross-Site Scripting allows

attacking users of the web application.

Recommendations for developers

TRACE can be used to bypass cookie protection with the httpOnly flag.

Disable handling of TRACE requests

Insufficient authorization issues were found in 43 percent of server-side

components. This is one of the most common high-risk vulnerabilities,

accounting for 45 percent of all critical vulnerabilities.

14

Figure 20. Most common vulnerabilities in server-side components (percentage of systems)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High risk Medium risk Low risk

Cross-Site Scripting

Insufficient Authorization

Information Leakage

Sensitive Information Disclosure in Error Messages

Denial of Service

Server-Side Request Forgery

Insufficient Brute-Force Protection

14%

14%

14%

29%

43%

43%

43%

29%

86%

Availability of TRACE

Two-Factor Authentication Flaws

Information leaks are another widespread problem with server-side compo-

nents, with potentially serious consequences. For instance, when we started

a chat in one of the tested applications, we saw the full name and phone

number of the other person in the server response. Another example of

critical data disclosure is the session ID in the link to a document handled in

the mobile application. If the attacker convinces the user to send a link to

this document, and the link contains the session ID, the attacker can imper-

sonate the user.

If the mobile application server accepts numeric input (for example, map

coordinates), restrictions must be in place. Without restrictions, the attack-

er can indicate arbitrary coordinates to search for an object on the map.

Invalid coordinates will cause a large delay in server response and, as a

result, denial of service. Disruption of app operation is harmful to the repu-

tation of the developer.

Mobile application threats

Almost all applications we studied were at risk of being accessed by hackers.

In the client-side vulnerabilities section, we pointed out that the most com-

mon issue with mobile applications was insecure data storage. So how can

information end up in hackers' hands? The most common scenario is mal-

ware infection. The chances of infection increase exponentially on devices

with administrator privileges (root or jailbreak). But malware can escalate

privileges on its own, too. For instance, ZNIU spyware does so by exploiting

the infamous Dirty COW vulnerability (CVE-2016-5195). Once on the vic-

tim's device, malware can request permission to access user data, and after

access is granted, send data to the attackers. Experts from TheBestVPN

have studied 81 VPN applications from Google Play and found that many of

them request questionable permissions.

29%
of server-side components
contain vulnerabilities that can
cause disruption of app operation

15

http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-5195
https://thebestvpn.com/android-vpn-permissions/

Recommendations for users

Be careful when apps request overly broad access to functionality or data. If the requested

permissions seem unreasonable for the application's intended purpose, do not grant them

A smartphone can be easily lost or stolen. Even though mobile operating

systems require setting a password by default, some users choose not to

have one. In this case, an attacker with physical access to the device can

plug it in to a computer and use special utilities to extract sensitive data

from device memory. For example, if backup creation is switched on in

Android, application data can be extracted from a backup using Android

Debug Bridge (ADB). With root privileges, data can be extracted even

when backups are disabled. On jailbroken Apple devices, users often do not

change the default SSH credentials (root:alpine). An attacker can then copy

application data to a computer via SSH. This threat is especially relevant

for corporate phones or tablets used by multiple employees who know the

device password.

Figure 21. Possible scenarios for theft of user data from mobile applications

16

Sometimes a mobile application can be hacked without any malware or

hacking utilities. For instance, the application may have no restriction on

the number of attempts to enter the PIN code, or this restriction is set only

on the client side and the count is reset when the application restarts. In

both cases, an attacker can make an unlimited number of password entry

attempts.

18%
of applications
do not restrict the number
of authentication attempts

Figure 22. Threats to client-side components (percentage of systems)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Unauthorized access to user data

Unauthorized application access

71%

65%

53%

MITM attacks

Recommendations for users

Your PIN code must be truly random. Do not use your date of birth, phone number,

or ID number. Use biometric authentication (fingerprint, voice, or face)

if your device supports it

Recommendations for developers

Limits on authentication attempts must be implemented both

on the server side and on the client side

Server-side vulnerabilities can enable attacks on users. Cross-Site Scripting,

the most common web vulnerability, was found in 86 percent of server-side

components. Attackers can use it to steal victim credentials, such as cook-

ies, with the help of malicious scripts. This vulnerability can threaten mobile

applications if they use components supporting HTML and JavaScript. For

example, WebView is a system component allowing Android applications to

show web content directly in an application.* iOS has similar components

called UIWebView and WKWebView.

* In early 2019, our experts
found that WebView contained
a vulnerability (CVE-2019-5765)
allowing access to Android user
data through a malicious application
or an Android instant app.

17

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5765

Injection of mail headers or HTML tags is useful for phishing attacks. By

injecting mail headers, an attacker can send emails to application users pos-

ing as any employee of the company that owns the mobile app.

Recommendations for users

Stay vigilant when going through your inbox. Carefully check links before opening them,

even if you are a client of the company that sent the email. If the linked address contains any

misspellings, the email is not genuine. Remember that bank employees never ask

for full card information

Recommendations for developers

Filter user-entered data on the server side. Use HTML coding for special characters

Figure 23. Top five threats for server-side components (percentage of systems)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Unauthorized application access

Unauthorized access to configuration information

Unauthorized access to user data

29%

43%

71%

71%

100%

Disruption of app operation

Attacks on users

Frequently, threats are caused by a combination of faults in the client side

and the server. Imagine, for instance, that when the user exits the applica-

tion, the session ID is not deleted on the client side and is instead sent to

the server with every new request, including during re-authentication. The

server, in turn, does not check session timeout, and after authentication it

reactivates the old session ID. In this case, any attacker who knows the ses-

sion ID can impersonate the user.

18%
of applications
contain session hijacking
vulnerabilities

18

Recommendations for developers

Session lifetime must be limited. The session ID must be deleted both on the client side

and on the server side. The server must create a new session for the user every time

authentication is required

Communication between the client and the server can also be vulnera-

ble. If the client side communicates with the server using insecure HTTP,

an attacker can intercept sensitive data. In the case of a mobile bank, for

instance, all payment information is jeopardized. To prevent interception,

use the secure HTTPS protocol. This makes the connection secure because

all data is encrypted. The device stores certificates. These special files tell

the client the name of the server it is supposed to send data to.

But even with HTTPS, client–server communication is not always secure.

On the device, the certificates are kept in a store used by all applications.

Malware can install an attacker's root certificate on the victim's smart-

phone—in which case all certificates verified with the fake root certificate

will be considered trusted. So if the victim connects to attacker-controlled

network equipment (a Wi-Fi router, for example), the attacker can perform

a man-in-the-middle (MITM) attack. By sitting in the middle of the con-

nection and listening to traffic, the attacker compromises all data that is

transferred.

 50% Android
 22% iOS

Percentages of applications

with insecure data transfer

Figure 24. Man-in-the-middle attack (if certificate pinning is not used)

19

Recommendations for developers

For maximum security of client–server communication, we recommend using certificate pinning.

With this approach, the certificate is embedded directly in the code of the mobile application.

As a result, the application becomes independent of the OS certificate store.

This prevents MITM attacks

Beside client–server communication, an app can also contain links for send-

ing data externally via insecure HTTP. Insecure data transfer is more com-

mon on Android. Starting with version 9, iOS has provided App Transport

Security, which prohibits insecure data transfer by default. However, an

developer can expressly list exceptions in the form of addresses with which

insecure communication is still allowed. This might be useful during appli-

cation debugging, but insecure links often end up in the final versions used

by the public.

Figure 25. Insecure links found in the source code of a mobile application

Risks for users

Our study indicates that all mobile applications are vulnerable. In a hand-

ful of cases exploiting vulnerabilities might require physical access to the

device, but usually this can be accomplished remotely via the Internet.

Every tested mobile application contained at least one vulnerability that

could be exploited remotely using malware.

Sometimes the hacker needs full access to the file system: jailbreak on iOS

or root privileges on Android. But even that is not always a challenge. Many

mobile device owners escalate their privileges in the OS on purpose when

trying to bypass various restrictions, sideload software, or customize the

user interface. According to researchers' data, 8 percent of iOS users have

jailbroken their devices and 27 percent of Android devices are running

with root privileges. Devices with such privileges are at greater risk, because

these privileges can be abused by malware. For instance, KeyRaider malware

spread through an app distribution platforms for jailbroken devices and stole

credentials, certificates, and encryption keys from 225,000 iOS users.

18%
of mobile applications
contain insecure external links

20

https://info.lookout.com/rs/051-ESQ-475/images/lookout-mobile-security-six-questions-whitepaper-UKv2.2.pdf
https://unit42.paloaltonetworks.com/keyraider-ios-malware-steals-over-225000-apple-accounts-to-create-free-app-utopia/

Recommendations for users

Do not escalate privileges. Rooting or jailbreaking a device opens up access to the device file

system and disables protection mechanisms

Recommendations for users

Update your OS and applications regularly. If you have rooted or jailbroken your device,

remember that it may not update automatically

Because of the scale of the malware problem, Google and Apple are tak-

ing active measures to combat cybercriminals. For protection from hack-

ers, Google offers Google Play Protect to scan applications on Android

devices and Google Play itself. To prevent distribution of malware through

the Apple App Store, Apple performs manual analysis of developer apps

before making them available for download.

This analysis helps to reduce the number of malicious applications, but

cannot catch all of them. Malware can come even from official app stores.

Hackers managed to upload 39 malicious programs to the App Store using

XcodeGhost, a fake version of the legitimate Xcode development environ-

ment used to create applications for Apple devices. Another example is

Anubis, a banking Trojan that successfully evaded security checks by both

Google Play and the Android security system.

21

https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://
https://www.bleepingcomputer.com/news/security/android-apps-steal-banking-info-use-motion-sensor-to-evade-detection/

Official app stores are just one way for malware to infect a device. Even

a brand-new smartphone can contain malicious code. For instance, a

developer attack resulted in spyware being pre-installed on Alcatel

smartphones. User devices were compromised even before they had been

started for the first time. Another example is the TimpDoor backdoor,

which hackers distributed by sending a link to victims using SMS.

To prevent attacks, iOS prohibits downloading software from sources other

than the App Store. But there are ways to work around this restriction.

These include use of the user's own certificates and Mobile Device

Management (MDM). To do that, the user must manually confirm that the

application developer's certificate is trusted and allow downloading and

installing the app from an untrusted source. In a phishing attack, hackers

may succeed in convincing the user to perform these steps.

Apple prohibits App Store applications from using private APIs. These APIs

contain methods that could be used to download other apps and perform

other actions. A Trojan could use private APIs to install other, non-App

Store software on the victim's device, therefore bypassing any security

checks by Apple. However, Apple's checks themselves are not perfect,

judging by distribution of malware such as YiSpecter. The technique used

by the YiSpecter attackers was very simple. A user opened an infected

link, confirmed installation of software from outside of the App Store,

and the device became infected. Once on the victim's device, YiSpecter

used private APIs and automatically downloaded other programs to steal

personal data.

Figure 26. Request to confirm installation of third-party software
(source: zdnet.de/88248255/ios-malware-yispecter-auch-fuer-geraete-ohne-jailbreak-

gefaehrlich/)

Recommendations for users

Do not open links received from unknown senders in SMS messages and chats. Even if you

know the person suggesting an application, remain vigilant. Never confirm requests

for installation of third-party software on your smartphone

22

https://www.upstreamsystems.com/secure-d-uncovers-pre-installed-malware-alcatel-android-smartphones-manufactured-tcl/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://unit42.paloaltonetworks.com/yispecter-first-ios-malware-attacks-non-jailbroken-ios-devices-by-abusing-private-apis/

One of the alternate ways of installing malware on Apple devices is down-

loading application files (.ipa) to the victim's computer and installing them

with the help of the victim's Apple ID (iCloud account) and application

installer (such as Cydia Impactor) via a USB connection. This malware

can be distributed on unofficial stores as free ("cracked") versions of App

Store software. This is how devices were infected with WireLurker.

Recommendations for users

Do not connect your device to untrusted PCs or charging stations. Modern mobile OS versions

ask the user to confirm trust. Never confirm trust if you are unsure about the security of the

computer to which you are connecting your device

Recommendations for users

Do not trust third-party mobile app stores. Suspicious software (such as allegedly "cracked"

free versions of commercial applications) can contain malicious code

Google's policy regarding downloading apps from alternate sources is less

stringent. During OS setup, the user decides whether to allow download-

ing software from unofficial sources. According to statistics, every fifth

Android device allows installation of applications from third-party sources.

In addition, 7 percent of Apple devices and 3 percent of Android devices

have at least one application installed from unofficial stores. Remember that

administrator privileges, as mentioned already, remove any iOS or Android

restrictions on software downloading.

Security depends on users. Device owners must take responsibility for pro-

tecting the data they store in mobile applications. But user precautions will still

fall short if developers leave vulnerabilities in their applications. Unfortunately,

not all developers of mobile software have risen to the occasion.

23

https://www.paloaltonetworks.com/resources/research/unit42-wirelurker-a-new-era-in-ios-and-os-x-malware.html
http://go.wandera.com/rs/988-EGM-040/images/mobile-threat-landscape-2019.pdf

Conclusions
Hackers love targeting mobile devices, which are rich

with personal data and payment card information.

Our results indicate that developers of mobile appli-

cations often neglect security, with the main issue

being insecure data storage. User information stored

in cleartext, unmasked data in screenshots, and keys

and passwords in source code are just a few of the

flaws that offer opportunities to cyberattackers.

Users themselves may unwittingly help to compro-

mise their devices by expanding smartphone capabil-

ities, disabling protection, opening suspicious links in

SMS messages, and downloading software from unof-

ficial sources. Securing user data requires a responsi-

ble attitude on the part of both application develop-

ers and device owners.

Nor can we underestimate the role of server vulner-

abilities. Protection of mobile application servers is

no better than that of clients. In 2018, every tested

server-side component contained at least one vul-

nerability enabling various attacks on users, includ-

ing impersonation of the developer in phishing emails,

placing the developer's reputation at risk. To prevent

exploitation of server vulnerabilities, we recommend

using a web application firewall (WAF).

Beyond client and server vulnerabilities, risks also

include client–server communication. Data sent over

an insecure protocol can be completely compromised.

But even secure connections are not always safe.

Developers still have yet to attain a deep understand-

ing of the importance of security.

Protection mechanisms are the weak spot in mobile

applications. Most of the discovered vulnerabilities

were introduced during the design stage and result

from failure to "think through" security-related ques-

tions. We recommend a methodical approach to

designing and following through on mobile applica-

tion security, regularly testing it starting from Day 1 of

the software lifecycle. The most effective method is

white-box testing, in which security analysts have full

access to source code.

24

About the research

This report includes data from comprehensive security assessments of

17 fully functional mobile applications tested in 2018. It does not include

applications whose owners did not provide their consent to using results of

security assessment for research purposes, and applications for which we

analyzed only some functionality.

Percentage

of applications covered

with white-box testing

65%

7 8 9
server-side
components
tested

client-side
components
tested
Android

client-side
components
tested
iOS

The security level of each application was assessed using black-, gray-,

or white-box methods with the assistance of automated tools. Black-box

testing means looking at an information system from the perspective of an

external attacker who has no prior or inside knowledge of the application.

Gray-box testing is similar to black-box testing, except that the attacker is

defined as a user who has some privileges in the application. White-box

testing includes use of all relevant information about the application, includ-

ing source code.

This document describes vulnerabilities in client-side and server-side com-

ponents. In addition, we reviewed mobile application threats, including

those caused by client–server communication. The report describes only

vulnerabilities related to faults in application code and configuration. Other

common information security issues (such as flaws in software update man-

agement) have not been considered here. Code vulnerabilities were split

into two groups:

 � Vulnerabilities in mobile application code

(made by programmers during development)

 � Errors in implementation of security mechanisms

(made during the design stage)

The risk level of vulnerabilities was assessed based on the impact of the

potential attack on user data and the application itself, taking feasibility

into account. We made a qualitative assessment of vulnerabilities as high-,

medium-, or low-risk.

59%18%

Мобильный банк

Другие

Личный кабинет (сфера услуг)

23%

59%18%

Mobile bank

Other

Customer account (service providers)

23%

Figure 27. Types of applications

Positive Technologies is a leading global provider of enterprise security solutions for vulnerability and compliance management, incident and
threat analysis, and application protection. Commitment to clients and research has earned Positive Technologies a reputation as one of the
foremost authorities on Industrial Control System, Banking, Telecom, Web Application, and ERP security, supported by recognition from the
analyst community. Learn more about Positive Technologies at ptsecurity.com.

© 2019 Positive Technologies. Positive Technologies and the Positive Technologies logo are trademarks or registered trademarks of Positive
Technologies. All other trademarks mentioned herein are the property of their respective owners.

ptsecurity.com
info@ptsecurity.com

About Positive Technologies

Mobile application_A4.ENG.0001.03

25

mailto:info%40ptsecurity.com?subject=

	Introduction
	Executive summary
	How mobile applications work
	Client-side vulnerabilities
	Server-side vulnerabilities
	Mobile application threats
	Recommendations for users
	Risks for users

	Conclusions
	About the research

