
A
U

TO
M

AT
ED

CO

D
E

A
N

A
LY

SI
S

W
EB

 A
PP

LI
C

AT
IO

N

V
U

LN
ER

A
BI

LI
TI

ES
 IN

 2
01

7

Automated code analysis:
web application vulnerabilities in 2017

2

CONTENTS

Introduction..3

Testing methods and classification..3

1.	 Executive summary...4

2.	 How PT AI works...4

2.1.	 Verifying vulnerabilities..5

2.2.	 Data flow diagrams...5

2.3.	 Vulnerability tree..6

3.	 Results...7

3.1.	 Participant portrait..7

3.2.	 Overall statistics..7

3.3.	 Most common vulnerabilities..8

3.4.	 Threat breakdown...9

3.5.	 Statistics by industry... 10

3.5.1.	 Banks and other financial institutions.. 10

3.5.2.	 Government... 12

3.5.3.	 E-commerce... 14

Conclusion.. 15

Automated code analysis:
web application vulnerabilities in 2017

3

INTRODUCTION

Positive Technologies regularly performs research and audits in the field of web application se-
curity. Findings from our in-the-field experience paint a sobering picture of the state of security.
While our findings in 2017 were concerning, the results in prior years were not assuring either:

+	 In 77 percent of external penetration tests, we found vulnerabilities that attackers could use to
obtain access to a company's internal network.1

+	 26 percent of all cyberincidents in Q3 2017 involved attacks on web applications.2

These numbers confirm that web applications are a big and tempting target: large numbers of
unfixed, easily exploitable vulnerabilities give attackers free reign to do everything from stealing
sensitive information to accessing internal systems.

Fortunately, most vulnerabilities can be discovered long before an attack even starts. And by
analyzing source code, it is possible to identify a much larger number of critical vulnerabilities in
web applications than is otherwise possible.

This report provides statistics on vulnerabilities in 33 web applications that were analyzed with
PT Application Inspector (PT AI) in automated security assessments in 2017.

TESTING METHODS AND CLASSIFICATION

Vulnerability assessment was conducted via automated white-box testing using PT AI. White-
box scanning refers to testing that makes use of all relevant information about the application,
including its source code.

The vulnerability classification in this document is the same as used in PT AI. This classification
differs from the Web Application Security Consortium Threat Classification (WASC TC v.2) due
to its more detailed breakdown of weaknesses, which in the WASC classification are grouped
in more general categories such as Application Misconfiguration and Improper Filesystem
Permissions.

Some of the tested applications are publicly available on the Internet, while others are used for
internal business purposes.

Our statistics only include code and configuration vulnerabilities. Other widespread information
security weaknesses, such as failure to install software updates, are not considered here.

PT AI built-in mechanisms were used to evaluate vulnerability severity levels.

1  Security trends & vulnerabilities review: corporate information systems

2  Cybersecurity threatscape: Q3 2017

http://projects.webappsec.org/w/page/13246978/Threat Classification
https://www.ptsecurity.com/upload/corporate/ww-en/analytics/Corp-Vulnerabilities-2017-eng.pdf
https://www.ptsecurity.com/upload/corporate/ww-en/analytics/Cybersecurity-threatscape-2017-Q3-eng.pdf

Automated code analysis:
web application vulnerabilities in 2017

4

1.	 EXECUTIVE SUMMARY

Key findings:

All analyzed web applications contained vulnerabilities. Automated source code analysis re-
vealed vulnerabilities in every web application that we analyzed. Only six percent of applications
were free of high-severity vulnerabilities.

Web application users are at risk. 85 percent of the web applications had vulnerabilities that
allow attacks against users. A hacker can exploit these vulnerabilities to steal users' cookies,
implement phishing attacks, or infect user computers with malware.

Finance web applications are the most vulnerable. High-severity vulnerabilities were found
in all tested banking and other finance web applications. The reason is that the operating logic
for these applications is more complex than in other industries. Greater complexity results in
more opportunities for critical vulnerabilities to arise. By exploiting these vulnerabilities, an at-
tacker may be able to bring an application offline or run arbitrary code on a target system, which
can lead to gaining control over the server hosting the web application.

All tested government web applications can be leveraged to attack users. All government
web applications tested by Positive Technologies contained vulnerabilities that facilitate attacks
against users. In addition, security awareness among the users of these applications is low, likely
increasing the success rate of phishing attacks.

Denial of service is the most common threat for e-commerce. In 75 percent of e-commerce
web applications, assessment revealed vulnerabilities enabling denial of service. DoS attacks
have the potential to cause significant financial losses for owners of such web applications.

2.	 HOW PT AI WORKS

As the tool used to perform testing, PT AI analyzes source code (or a compiled web application)
by applying abstract interpretation. This method builds upon classic static application security
testing (SAST) while providing more precise results. Abstract interpretation allows generating
attack vectors for any suspected vulnerability, creating specific guidance for remediation, gen-
erating test exploits, and determining any additional conditions that an attacker would need to
exploit the vulnerability. If a web application is already deployed, PT AI can use dynamic appli-
cation security testing (DAST) for analysis.

The output of PT AI analysis contains the following details for each vulnerability:

+	 Vulnerability type, line number, and code fragment containing the vulnerability, description,
and guidance for remediation of vulnerabilities of the relevant type

+	 Test exploit to confirm or disprove existence of the vulnerability
+	 Data flow diagram
+	 Vulnerability tree

PT AI flowchart

Description of vulnerabilities
and test exploits for verification

Data flow diagrams

PT Application
Inspector

Source code or link to
production application

Vulnerability trees

Context is given for each vulnerability, in the form of test exploits, data flow diagrams, and vul-
nerability trees. This comprehensive information gives a full picture of identified vulnerabilities
and provides the details needed for fixing the source code of the web application.

Automated code analysis:
web application vulnerabilities in 2017

5

2.1.	 Verifying vulnerabilities

PT AI applies abstract interpretation methods in order to verify vulnerabilities and rule out false
positives. PT AI generates special test HTTP requests (exploits), which are intended to exploit
vulnerabilities of the web application as deployed on a test server. These exploits are used both
for manual and automated (Autocheck) testing. If necessary, an exploit can be used to make
a virtual patch: in this case, PT Application Firewall applies the rules needed to block attacks
against the active web application until the application source code can be fixed in a more
permanent way.

Vulnerability verification using a test exploit

Test exploits also can be generated for cases involving extra requirements for successful vul-
nerability exploitation, such as being logged in to a system. Such cases require a partial exploit
combined with extra requirements for exploitation, which are defined using abstract interpreta-
tion. These extra requirements, when met, allow verifying that a vulnerability is exploitable. This
method allows detecting and verifying second-order vulnerabilities.

Vulnerability exploitation conditions

2.2.	 Data flow diagrams

PT AI uses scanning results to plot data flow diagrams, which show a sequence of transforma-
tions of user-controlled input, from when the input appears in the application up to the vulner-
ability exit point (a potentially dangerous operation). Each diagram shows the path leading from
entry point to exit point corresponding to a vulnerability exploitation variant.

Automated code analysis:
web application vulnerabilities in 2017

6

Data flow diagrams have a standard structure and consist of the following items:

+	 Entry point: starting point in the execution flow
+	 Taint data entry: file and line of code describing the location of user-controlled input
+	 Data operation: a description of one or more functions that modify potentially dangerous input
+	 Exit point: the line where a potentially vulnerable function is run

Data flow diagram

Data flow diagrams visualize the flow of data from a vulnerability entry point to its exit point in
order to facilitate the verification process.

2.3.	 Vulnerability tree

A vulnerability tree is a diagram corresponding to the control flow of the application, containing
branching operations and potentially dangerous operations (highlighted in red). The following
example contains a simple vulnerability tree; however, most vulnerabilities have a more com-
plex tree with a far greater number of blocks and branching operations.

Simple vulnerability tree

Automated code analysis:
web application vulnerabilities in 2017

7

3.	 RESULTS

3.1.	 Participant portrait

The web applications in our dataset tested with PT AI represent a variety of industries. Banks
and other financial institutions, as well as government agencies, tend to be the most interested
in source code analysis.

These statistics reinforce the research results of the SANS Institute:3 banking and government
are particularly concerned with securing their web applications, since these web applications
are the top priorities for attackers. This is also consistent with the statistical findings of Positive
Technologies quarterly research on web application attacks.4

3.2.	 Overall statistics

Using automated security assessment, PT AI found vulnerabilities of various severity levels in all
tested web applications. The majority of these vulnerabilities were of medium severity (65%).

Looking at the most dangerous flaws, only six percent of tested web applications contained zero
high-severity vulnerabilities. While the web applications in our dataset are not necessarily represent-
ative of all web applications (the tested applications are not standard CMS platforms and contain
large amounts of custom code), even one critical vulnerability is enough to fully compromise an
application or entire server.

3  State of Application Security: Closing the Gap

4  Quarterly web application attack statistics are available at: ptsecurity.com/ww-en/analytics/

Web applications, by industry (percentage of tested web applications)

Finance

Government

IT

E-commerce

Other

Media

46%
12%

18%

6%

12%

6%

Severity of vulnerabilities

High

Low

Medium

27%
8%

65%

https://www.sans.org/reading-room/whitepapers/analyst/2015-state-application-security-closing-gap-35942
https://www.ptsecurity.com/ww-en/analytics/

Automated code analysis:
web application vulnerabilities in 2017

8

3.3.	 Most common vulnerabilities

The most common vulnerability found in automated source code analysis was Cross-Site
Scripting, which allows attackers to perform phishing attacks against users or infect their com-
puters with malware. This same vulnerability also heads the list of vulnerabilities found in man-
ual web application testing.5 Next in frequency was HTTP Response Splitting. If successfully
exploited, this vulnerability allows attacks against web application users by sending a double
HTTP response to a browser, with the header and field contents partially controlled by the at-
tacker. Arbitrary File Reading, which facilitates unauthorized access to contents of arbitrary files
on a server, rounds out the top three vulnerabilities. Thus an attacker can obtain web applica-
tion source code, credentials, and other sensitive information processed by a system.

Out of the ten most common vulnerabilities, five are of high severity and, if exploited, may
cause severe consequences. For example, by exploiting an Arbitrary File Creation vulnerability,
an attacker may be able to execute arbitrary code on a target system and fully compromise the
server.

Security flaws include missing or incorrect values of properties and directives. For example, the
requireSSL property value was not set for some applications. This property enables or disables
the SECURE attribute in the Set-Cookie HTTP header, which is responsible for requiring a secure
HTTPS connection for transmission of cookies. In the OWASP classification,6 this flaw falls under
category A5: Security Misconfiguration.

5  Security trends & vulnerabilities review: web applications (2017)

6  owasp.org/index.php/Top_10_2017-Top_10

Maximum severity of detected vulnerabilities (percentage of tested web applications)

3%
3%

94%

High

Low

Medium

Most common vulnerabilities (percentage of tested web applications)

0%

Server-Side Request Forgery

Arbitrary File Creation

XXE Injection

SQL Injection

Application Security Flaws

Open Redirect

Arbitrary File Modification

Arbitrary File Reading

HTTP Response Splitting

Cross-Site Scripting

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High severity Medium Low

39%

42%

42%

42%

45%

48%

48%

52%

58%

82%

https://www.ptsecurity.com/upload/corporate/ww-en/analytics/Web-vulners-2017-eng.pdf
https://www.owasp.org/index.php/Top_10_2017-Top_10

Automated code analysis:
web application vulnerabilities in 2017

9

The following diagram categorizes vulnerabilities based on the OWASP Top 10 (2017). Any vulner-
abilities outside of the ten most critical web application security risks are in the Other category.

Vulnerabilities categorized per the OWASP Top 10 classification

A1 – Injection

A3 – Cross-Site Scripting (XSS)

A6 – Sensitive Data Exposure

A5 – Security Misconfiguration

A9 – Using Known Vulnerable Components

Other

A8 – Cross-Site Request Forgery (CSRF)

45%
13%

29%

2%

9%

1%

1%

3.4.	 Threat breakdown

After assessing the potential impact of each web application vulnerability, we created a list of
the most common threats. At the head of the list: attacks targeting web application users.

Most frequent threats (percentage of tested web applications)

0%

System (Debug) Information Leakage

Sensitive Data Leakage

Web Application Source Code Leakage

Deletion or Modification of Server Files

Unauthorized Database Access

OS Commanding

Arbitrary File Reading

Denial of Service

User Attacks

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High severity Medium Low

24%

33%

33%

42%

45%

55%

61%

70%

85%

Of the nine top threats, four are of high severity. By taking advantage of these vulnerabilities, an
attacker could obtain unauthorized access to sensitive information on a server (61%) or database
(46%), run arbitrary OS commands on a server (55%), and delete or modify files (42%). To access
contents of arbitrary files on a server, an attacker must successfully take advantage of such vulner-
abilities as Arbitrary File Reading and XML External Entity. SQL Injection makes it possible to steal
or modify information from databases, or even delete all data. The most dangerous threat is OS
Commanding. With this technique, an attacker can gain total control over a server and execute OS
commands with the privileges of the web application. If a LAN interface is found on the target serv-
er, the attacker can gain access to local systems of the web application owner, amplifying the attack
to a full compromise of the entire corporate infrastructure. As found in our testing, vulnerabilities
often make these potentially devastating attacks feasible for real attackers.7

85 percent of the web applications contained vulnerabilities that allow attacks against users. Most
attacks against users are the result of Cross-Site Scripting. However, many of the tested web applica-
tions contained other vulnerabilities that enable attacks: HTTP Response Splitting, Open Redirect,
and Cross-Site Request Forgery.

7  Corporate information system penetration testing: attack scenarios

https://www.ptsecurity.com/upload/corporate/ww-en/analytics/Corp-PenTests-eng.pdf

Automated code analysis:
web application vulnerabilities in 2017

10

The results clearly show the necessity to search for vulnerabilities in web application source
code both during development and on an ongoing basis.

3.5.	 Statistics by industry

This section contains the results of source code analysis for finance, government, and e-com-
merce web applications. Due to small sample size, IT and media web applications are not con-
sidered here.

Vulnerabilities allowing attacks against clients

Cross-Site Scripting

Open Redirect

HTTP Response Splitting

Cross-Site Request Forgery

1%
69%15%

15%

Web applications containing critical vulnerabilities, by industry (percentage of tested web applications)

0%

E-commerce

Government

Finance

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

75%

83%

100%

Industries differ in the vulnerabilities in their web applications, as well as their threat profiles.

3.5.1.	 Banks and other financial institutions

80 percent of the web applications for financial institutions were vulnerable to Cross-Site
Scripting, and almost half of them to HTTP Response Splitting. These vulnerabilities are a prima-
ry factor in why 87 percent of applications allowed attacks on web application users. A risk of
denial of service is the result of XML External Entity and Arbitrary File Modification. The latter can
also be useful for running arbitrary code on a target system, which may lead to total control of
the web application server. If the attacked application is an online banking system, or a compro-
mised server hosting applications that involve financial transactions, vulnerabilities can bring a
very large payday to the attacker.

Most common vulnerabilities in finance web applications (percentage of tested web applications)

0%

HTTP Response Splitting

Arbitrary File Modification

XML External Entity

Arbitrary File Reading

Cross-Site Scripting

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High severity Medium

47%

47%

47%

53%

80%

Automated code analysis:
web application vulnerabilities in 2017

11

Most common threats for finance web applications (percentage of tested web applications)

0%

Unauthorized Database Access

OS Commanding

Arbitrary File Reading

Denial of Service

User Attacks

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High severity Medium

40%

53%

60%

80%

87%

Example: Security assessment of one banking web application revealed that due to mistakes
made during deployment, test and demo files were uploaded as part of a framework. This er-
ror caused numerous vulnerabilities. For instance, the index.php module contained a Cross-Site
Scripting flaw, which made it possible for an attacker to craft a link to a specific web page and
trigger execution of malicious JavaScript code. Such JavaScript code would create an HTTP GET
request to the cookies.php module, pretending to be the user in order to obtain the user's cookie.

Example of Cross-Site Scripting vulnerability

Analysis also revealed that the modules in the \filebrowser directory contained a demo appli-
cation. The demo application allowed performing core file management functions in the \root
directory using a web interface. Source code analysis found numerous Arbitrary File Creation
and Arbitrary File Modification vulnerabilities that could be exploited for unlimited copying and
renaming of files in the \filebrowser directory. These vulnerabilities would also make it possible
to deplete free space on the web server local disk, causing denial of service.

Example of Arbitrary File Modification vulnerability

Example of Arbitrary File Creation vulnerability

Automated code analysis:
web application vulnerabilities in 2017

12

3.5.2.	 Government

All government web applications tested by Positive Technologies contained vulnerabilities that
facilitate attacks against users. Users of government web applications tend to not be securi-
ty-savvy, which makes them more likely to fall for fraud.

Most common vulnerabilities in government web applications (percentage of tested web applications)

0%

SQL Injection

Remote OS Commanding

Open Redirect

HTTP Response Splitting

Cross-Site Scripting

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High severity Medium

67%

67%

83%

83%

100%

Most common threats for government web applications (percentage of tested web applications)

0%

System (Debug) Information Leakage

Unauthorized Database Access

OS Commanding

Denial of Service

User Attacks

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High severity Medium Low

33%

67%

67%

67%

100%

Example: Security assessment of a web application for a local government revealed SQL
Injection, a critical vulnerability that, if exploited, would allow obtaining sensitive information
from a database.

Data flow diagram for SQL Injection

Further source code analysis showed that any attacker could access the file info.php, which
contains details about the system configuration. The vulnerability was manually verified by ac-
cessing the file contents. This information helps an attacker to plan and conduct additional
attacks on the application.

Automated code analysis:
web application vulnerabilities in 2017

13

Example of Debug Information Leakage

In another case, analysis of web application code revealed a critical XML External Entity
vulnerability.

Example of exploiting Debug Information Leakage

Data flow diagram for XML External Entity

Automated code analysis:
web application vulnerabilities in 2017

14

3.5.3.	 E-commerce

Denial of service is especially threatening for e-commerce web applications, because any down-
time means missed business and lost customers. High-profile e-commerce web applications re-
ceive large amounts of daily visits, increasing the motivation for attackers to find vulnerabilities
to turn against users.

Most common e-commerce vulnerabilities (percentage of tested web applications)

0%

HTTP Response Splitting

Cross-Site Scripting

Arbitrary File Modification

Arbitrary File Reading

Application Security Flaws

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High severity Medium Low

50%

50%

50%

50%

75%

Most common threats for e-commerce (percentage of tested web applications)

0%

Sensitive Data Leakage

User Attacks

Arbitrary File Reading

Deletion or Modification of Server Files

Denial of Service

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

High severity Medium

50%

50%

50%

50%

75%

Example: When testing a content management platform for e-commerce, we found a critical
Arbitrary File Reading vulnerability. It was impossible to use a test HTTP request to verify this
vulnerability, because exploiting it required that the attacker be logged in. The conditions for
vulnerability exploitation include the MD5 hash of the required password, which was found dur-
ing source code analysis. The MD5 hash can be used to bruteforce the password, log in to the
system, and successfully exploit this vulnerability. This case is a typical example of the danger of
undeclared features left by web application developers.

Data flow diagram for Arbitrary File Reading

Automated code analysis:
web application vulnerabilities in 2017

15

CONCLUSION

The results of source code analysis speak for themselves: this approach enables detecting a
large number of vulnerabilities of various severity levels. Such an ability is critical for increasing
the end-product security of web applications. Automated tools for source code analysis should
be used at multiple stages of development, because analyzers are much quicker than manual
analysis.

Merely detecting vulnerabilities, of course, is not enough: developers have to make fixes to code
and roll them out to production systems. Any delay in remediation means more opportunities
for attackers. Therefore, effective protection requires a multipronged approach built on periodic
white-box security assessment of web applications including automated tools, complemented
by proactive protection such as a web application firewall (WAF) to detect and prevent attacks
against web applications.

PT_AI_Statistics_A4.ENG.0004.03

info@ptsecurity.com ptsecurity.com

About Positive Technologies

Positive Technologies is a leading global provider of enterprise security solutions for vulnerability and compliance
management, incident and threat analysis, and application protection. Commitment to clients and research has earned
Positive Technologies a reputation as one of the foremost authorities on Industrial Control System, Banking, Telecom,
Web Application, and ERP security, supported by recognition from the analyst community. Learn more about Positive
Technologies at ptsecurity.com.

© 2018 Positive Technologies. Positive Technologies and the Positive Technologies logo are trademarks or registered trademarks of Positive
Technologies. All other trademarks mentioned herein are the property of their respective owners.

mailto:info%40ptsecurity.com?subject=
http://www.ptsecurity.com

	Introduction
	Testing methods and classification

	1.	Executive summary
	2.	How PT AI works
	2.1.	Verifying vulnerabilities
	2.2.	Data flow diagrams
	2.3.	Vulnerability tree

	3.	Results
	3.1.	Participant portrait
	3.2.	Overall statistics
	3.3.	Most common vulnerabilities
	3.4.	Threat breakdown
	3.5.	Statistics by industry
	3.5.1.	Banks and other financial institutions
	3.5.2.	Government
	3.5.3.	E-commerce

	Conclusion

