
W
he

re
 th

er
e'

s
a

JT
A

G
, t

he
re

's
a

w
ay

:
ob

ta
in

in
g

fu
ll

sy
st

em
 a

cc
es

s
vi

a
U

SB
Maxim Goryachy and Mark Ermolov

Everyone makes mistakes. These words are cer-
tainly true for developers involved in low-level
coding, where such common tools as print de-
bugging and software debuggers run into lim-
its. To solve this problem, hardware developers
use in-circuit emulators or, if available on the
target platform, the JTAG debugging interface
(IEEE1149.1 [1]). Such debugging mechanisms
first appeared in the 1980s [2]. Over time, mi-
crochip vendors extended the functionality
of these interfaces. This allowed developers
to obtain detailed information on power con-
sumption, find bottlenecks in high-perfor-
mance algorithms, and perform many other
useful tasks.

Hardware debugging tools are also of interest to
security researchers. These tools grant low-lev-
el system access and bypass important security
protections, making it easier for researchers to
study a platform's behavior and undocument-
ed features. Unsurprisingly, these abilities have
attracted the attention of intelligence services
as well [3].

For many years only a limited audience had ac-
cess to these technologies for Intel processors,
due to the need to own expensive specialized
equipment. But with Skylake processors, the
situation changed in a big way: debugging
mechanisms were built into the Platform
Controller Hub (PCH) [4], which opened up
this powerful tool to ordinary users, including
malicious ones, who could use it to gain total
control over the processor. For security reasons,
these mechanisms are not activated by default,
but as we show in this article, they can be acti-
vated on the equipment sold in common com-
puter stores.

EVOLUTION OF DEBUGGING TOOLS
ON INTEL PROCESSORS

 From in-circuit emulator to JTAG

Initially, an in-circuit emulator (ICE) for Intel 80286 pro-
cessors was a separate computer ("the big blue box" [5]).
The ICE was connected instead of the processor in the
system to be debugged, and emulated its behavior. This
emulator allowed setting breakpoints, modifying mem-
ory and processor registers, and performing reads and
writes.

Later, Intel introduced the I2ICE hardware debugger
(Figure 1), which did not require replacing the inte-
grated processor. Instead, developers connected the
I2ICE to the debugged system using special adapters.
Communication with the host computer involved a
standard serial connection at the speed of 9600 baud [5].

As technology progressed and bitrates increased, Intel
ceased to develop stand-alone full-featured debug-
gers and started to partially relocate them inside the
processor in the form of a special undocumented ICE
mode. (In design, ICE resembled another mode called
System Management Mode (SMM), and some develop-
ers at the time strongly believed that SMM was nothing
more than a documented and extended ICE mode [6].)
Standardization of debugging mechanisms in electron-
ics, in turn, resulted in the IEEE1149.1 (JTAG) test interface
supported on some Intel 80486 processors [7].

Joint Test Action Group (JTAG) is the name of the team
that developed the Standard for Test Access Port and
Boundary-Scan Architecture (IEEE1149.1 [1]). This docu-
ment describes standardized testing and debugging
equipment for a wide range of devices. Eventually, the
JTAG abbreviation began to be associated with the
IEEE1149 standard. JTAG is widespread in modern indus-
trial microchips and is used for testing, installing firmware,
debugging, and final factory-line inspection. In terms of
physical implementation, JTAG is four or five dedicated
pins that form the Test Access Port (TAP). The JTAG stand-
ard supports device chaining, which allows access to any
connected device (Figure 2).

Hardware developers often extend JTAG functionality
with new features, and Intel processors are no excep-
tion. Starting with Pentium processors, Intel introduced
a more affordable and powerful stand-alone debugger
that uses a special probe mode.

Figure 1. Intel I2ICE, one of the first in-system debuggers
for Intel 80386 processors (recycledgoods.com/intel-

series-iv-emul-system-iii514b.html)

WHERE THERE'S A JTAG, THERE'S A WAY:
OBTAINING FULL SYSTEM ACCESS VIA USB

 Probe mode

Probe mode is yet another undocumented mode of Intel pro-
cessors. It is used to perform diagnostics and debugging. This
mode is impossible to activate without access to the JTAG reg-
isters of a CPU. Probe mode allows the processor only to mod-
ify memory and read/write using I/O ports. In this mode, nor-
mal execution of instructions is interrupted and the processor
switches to a dormant state while awaiting JTAG commands.
This behavior differentiates probe mode from ICE mode, in
which the processor continues to perform instructions. When
probe mode is entered, prefetching and decoding of com-
mands stops. Commands from JTAG to modify or read are
fed directly into the processor execution units, bypassing the
prefetch and decode stages [8], which allows access to a num-
ber of registers not accessible in standard modes.

Probe mode is implemented as a JTAG extension with several
added registers and signals (R/S#, PRDY) (see [8] and [9] for more
details on probe mode implementation). Third-party compa-
nies also produce JTAG adapters for x86 processors supporting
this extension, but only Intel debuggers will be considered in
this article.

 Modern hardware and technologies for Intel processor
 debugging

Modern Intel processors offer JTAG via three interfaces:

+ Intel In-Target Probe eXtended Debug Port (ITP-XDP) (Figure 3)
+ Intel Direct Connect Interface (DCI) makes JTAG available

via USB 3.0 by means of either of the following connection
types (Figure 4):
+ USB3 Hosting DCI (USB debug cable)—an ordinary DbC

cable
+ BSSB Hosting DCI (Intel SVT Closed Chassis Adapter)—a

specialized adapter (Figure 5)

Intel ITP-XDP has a closed protocol and requires a special board
socket and specialized software (Intel System Studio, a trial ver-
sion of which is available on the vendor's website). Other disad-
vantages are high price (around USD $3,000) and the necessity to
sign a Corporate Non-Disclosure Agreement [10]. The high price
and CNDA put this debugger beyond the reach of ordinary de-
velopers and home users.

However, starting with Skylake processors, Intel introduced
Direct Connect Interface (DCI) technology. A rather superficial
description is available in the Intel documentation [4]. DCI aims
to simplify mobile device development, which results in the fol-
lowing drawback: it can be activated without hardware modifi-
cations. The Intel SVT adapter connection uses USB 3.0 pins but

Figure 2. Connecting debugged devices in a JTAG chain

Figure 3. ITP-XDP Figure 4. DCI connection types

implements its own protocol, making it possible to work with
the target system in deep sleep mode. Unfortunately, the SVT
adapter, though relatively inexpensive ($390), is also available for
purchase only after a CNDA is signed.

The most attractive option for an ordinary programmer (and
one that does not involve signing any documents) is USB3-
hosted DCI. The JTAG interface is accessed over a common USB
3.0 debug cable. As soon as DCI is activated on the target PC,
the USB 3.0 port switches to slave mode and starts accepting
commands from the host system.

One important question about USB3-hosted DCI is whether any
external USB 3.0 port is suitable for DCI connections or a debug
port available only on special development boards is required.
Let's review this issue in detail.

There is confusion among system developers caused by the
fact that debugging over USB has existed since long ago (USB
2.0) and is currently widely used by developers for software
debugging of OS kernels and UEFI applications. However, soft-
ware debugging via USB (in windbg or UEFI debug agent) has
nothing to do with hardware debugging via JTAG, with the
exception of transport. The USB 2.0 controller specification
(Enhanced Host Controller Interface, EHCI) includes a debug
port (PCI capability) for interaction between a server (software
or hardware) on the debugged computer and the host client.
In particular, the Windows kernel supports debugging via the
EHCI Debug Port, which requires a USB 2.0 debug cable with
integrated USB 2.0 device. In this case, not every external USB
2.0 port could work as a debug port: this option was assigned
to certain ports which might, depending on the hardware
manufacturer, be only on the inside of the case. Therefore, de-
velopers deliberately looked for hardware with an external de-
bug port for debugging over USB. So Debug Port ability is an
attribute of a specific USB port.

However, the situation changed entirely with USB 3.0 and its
eXtended Host Controller Interface (XHCI) specification. This
specification also supports debugging over USB, but it has un-
dergone fundamental changes and is now called USB Debug
Capability (DbC). According to the specification, DbC is not a
port attribute, but a property of a specific XHCI controller. So if
an XHCI controller supports DbC, then debugging over USB 3.0
is possible over any USB 3.0 port, including external ports. DbC
automatically selects the first port to which the client imple-
menting USB 3.0 transactions connects a debug cable.

It is important to note that the first XHCI controllers did not
support DbC, making these controllers useless for debugging
over USB. Then, starting with the 100 series (for Skylake), Intel
introduced their own XHCI controller supporting DbC on PCH.
Intel DCI (in Skylake and later) uses USB 3.0 DbС as transport for

the JTAG client connection. It does not use USB 2.0 Debug Port
technology.

What does this all mean? Any USB 3.0 port can be used for access
to DCI and JTAG debugging.

DCI ACTIVATION

How can we activate DCI? We found three solutions:

+ EFI Human Interface Infrastructure
+ PCH Strap (Intel Flash Image Tool)
+ P2SB device

 Activation via EFI Human Interface Infrastructure

EFI Human Interface Infrastructure (HII) is a special mechanism
for creating a user interface in the UEFI, as well as processing and
managing user input. The architectures of modern UEFI BIOS
software include many hidden options that are user-inaccessible
but processed nonetheless. This is the basis for our first solution.

EFI HII identifies default values for all options, including the hid-
den ones. As soon as the option related to DCI is found, it can
be activated for the default configuration, and DCI can be ena-
bled by restoring the BIOS factory settings. The utility AMI BIOS
Configuration Program 5.0 makes it possible to edit these settings.
The edited image is programmed in SPI flash by the programmer
or via the standard BIOS firmware mechanism, if privileges allow.

However, this way has one drawback: the system will not boot if
Boot Guard is activated, since the utility modifies the EFI module.

 Activation via Flash Descriptor Region

DCI can also be enabled by setting the PCH configuration bits
either manually (they are in the Flash Descriptor Region) or us-
ing Flash Image Tool. This solution works even if Boot Guard is
enabled.

Figure 5. Intel SVT Closed Chassis Adapter

 Activation via P2SB device

Finally, we can try to act directly via a P2SB device. A special index
and register can be found in the documentation for different PCH
generations, using which DCI can be enabled on the fly unless
the BIOS has blocked DCI modification.

Figure 6

Figure 7

WHERE THERE'S A JTAG, THERE'S A WAY:
OBTAINING FULL SYSTEM ACCESS VIA USB

REFERENCES

1. 1149.1-1990—IEEE Standard Test Access Port and Boundary-Scan Architecture // standards.ieee.org/
findstds/standard/1149.1-1990.html

2. jtag.com/en/content/about-jtag-technologies

3. resources.infosecinstitute.com/close-look-nsa-monitor-catalog-server-hacking

4. 6th Generation Intel Core Processor I/O Datasheet. Vol. 2 // www-ssl.intel.com/content/www/us/en/
processors/core/6th-gen-core-pch-u-y-io-datasheet-vol-2.html

5. In-Circuit Emulation, Robert R. Collins // rcollins.org/ddj/Jul97.

6. Intel's System Management Mode, Robert R. Collins // Dr. Dobb's Journal. January 1997.

7. Guk M. Protsessory Intel ot 8086 do Pentium II [Intel Processors from the 8086 to Pentium II]. St.
Petersburg: Piter, 1998. (In Russian)

8. Overview of Pentium Probe Mode, Robert R. Collins // rcollins.org/articles/probemd/ProbeMode.html.

9. Guk M. Protsessory Pentium II, Pentium Pro i prosto Pentium [Pentium II, Pentium Pro, and Plain
Pentium Processors]. St. Petersburg: Piter, 1999. (In Russian)

10. www-ssl.intel.com/content/www/us/en/forms/design/registration-privileged.html

11. asset-intertech.com/products/jtag-interposers-and-arium-jtag-adapters

12. blog.ptsecurity.com/2017/01/intel-debugger-interface-open-to.html

SUMMARY

Debugging technologies found on modern Intel processors facilitate development of UEFI modules, op-
erating systems, and hypervisors. Security researchers use this low-level mechanism to obtain privileged
access to hardware, in order to search for malware and study undocumented hardware and driver features.
But as with any debugging mechanism, DCI can also be used by malicious users to gain unauthorized
access to data.

To defend against such attacks, we advise that users activate Boot Guard, verify the status of the DCI enable
bit, and disable debugging in the IA32_DEBUG_INTERFACE register (even if the register is disabled, DCI can
still run but it is unable to interrupt and therefore access to memory and registers is impossible).

Figure 8

This solution exploits a vulnerability, because if the BIOS does not
block writes to the ECTRL register, then (by using the ability to
save the configuration between restarts and after power down)
we can enable DCI once and then use the JTAG interface as a
hardware backdoor to the system (and bypass the lock screen,
for example).

We conducted research [12] and found that major motherboard
manufacturers do not block this register. This is worrisome since
this method allows enabling DCI and reprogramming the BIOS
while bypassing any protection, including verification of digital
signatures.

	Editorial:
	Lock, stock and smoking IoT

	The year in security incidents
	critical
infrastructures

	ICS security:
	State of the Nation report

	Penetration testing:
	attack scenarios

	Vulnerabilities
	in corporate information systems

	Analyzing digital incidents:
	forewarned is forearmed
	FINANCE

	Vulnerabilities in financial applications:
	a year in review

	Highway to ATM riches:
	bypassing application control

	ATM
	logic attacks
	WEB SECURITY

	Web application
	attack trends

	Annual web application vulnerability report:
	time to dig into the source code

	Rooting in your sleep:
	vulnerabilities in industrial UNIX servers

	WAF Bypass contest
	at PHDays VI
	MOBILE THREATS

	WhatsApp & Telegram encryption
	rendered ineffective by SS7 vulnerabilities

	Vulnerable Diameter:
	4G networks under attack

	Dronejacking contest:
	how they took our copter

	Perils
	of wireless keyboards and mice

	Attacks
	on corporate Wi-Fi networks
	DEEP DRILLING

	Where there's a JTAG, there's a way:
	obtaining full system access via USB

	Android platform security issues:
	taxonomy and analysis

	Hunting for code vulnerabilities:
	theory, practice, and potential of SAST

	Detecting encrypted data
	in network traffic
	FUTURE

	Don’t trust your navigator:
	vulnerabilities in GPS and GLONASS

	How to leave
	an IoT hacker moneyless

	Artificial Intelligence and Security:
	who wins?
	OUR SCHOOL

	The Standoff:
	new format for hacking contests

	About our authors

